
ibm.com/redbooks

DB2 UDB V7.1
Porting Guide

Tetsuya Shirai
Kenji Horino

John Russell
John V. Partridge Jr.

Art Sammartino

A practical guide to porting Sybase
Adaptive Server to DB2 UDB

Techniques and considerations
for migration projects

Databases, applications,
and data conversion

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

DB2 UDB V7.1 Porting Guide

December 2000

SG24-6128-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (December 2000)

This edition applies to Version 7, Release 1 of IBM DB2 Universal Database, Program Number
5648-D48 for use with the AIX V4.3.3 Operating system.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix C, “Special notices” on page 247.

Take Note!

Contents

Figures .ix

Tables. .xi

Preface . xiii
The team that wrote this redbook. xiii
Comments welcome. xv

Chapter 1. Introduction . 1
1.1 Decision to port databases and applications. 1
1.2 Project overview . 2
1.3 Summary of considerations . 3

Chapter 2. Project scenario . 5
2.1 Source database system . 5
2.2 Project scope . 6
2.3 Hardware and software configuration . 7

Chapter 3. Conversion process . 9
3.1 Strategy and conversion methodologies . 9

3.1.1 Strategy definition. 9
3.1.2 Conversion methodologies . 11

3.2 Planning the conversion . 15
3.2.1 Stage one: defining the strategy . 16
3.2.2 Stage two: testing the concept . 18
3.2.3 Stage three: implementation and cut-over 19

3.3 Conversion considerations . 21

Chapter 4. Database structure and data types 23
4.1 Database structure comparisons . 23

4.1.1 Sybase database structure . 23
4.1.2 DB2 database structure . 31
4.1.3 DB2 logical storage . 39
4.1.4 Tables . 40

4.2 Data type comparisons. 41
4.2.1 Character data types . 42
4.2.2 Numeric data type . 44
4.2.3 Datetime data type . 45
4.2.4 Binary data type . 46
4.2.5 Other data types . 48
© Copyright IBM Corp. 2000 iii

Chapter 5. Database conversion . 53
5.1 Conversion method . 53

5.1.1 Manual conversion . 59
5.1.2 Using a conversion tool . 62

5.2 Create DB2 instance . 64
5.3 Create DB2 database . 65

5.3.1 Obtain sort sequence information from Sybase. 65
5.3.2 Create database command for DB2 . 66
5.3.3 Set up transaction log path . 67

5.4 Create table spaces . 67
5.4.1 Designing table spaces. 67
5.4.2 Create tablespace statement . 70

5.5 Create user defined data types. 72
5.5.1 Create data type statement . 72
5.5.2 User defined data types and rules . 73

5.6 Creating tables . 74
5.6.1 CREATE TABLE statement . 75
5.6.2 Add constraints. 78

5.7 Create views . 79
5.7.1 Create view statement . 80
5.7.2 Change the timestamp format using views 80

5.8 Create indexes . 81
5.8.1 Indexes in Sybase and DB2 . 82
5.8.2 CREATE INDEX statement . 83

5.9 Database security . 84
5.9.1 Sybase security . 84
5.9.2 DB2 security . 87
5.9.3 Migrating users and group definitions . 87
5.9.4 Granting authorities and privileges . 88

Chapter 6. Data conversion . 91
6.1 Unload data from Sybase . 91

6.1.1 Unload data using BCP utility . 92
6.1.2 Unload with a select statement . 94
6.1.3 Loading data into DB2 UDB . 99
6.1.4 DB2 IMPORT and LOAD utilities . 99
6.1.5 Load data to DB2 from Sybase BCP file 100
6.1.6 Load data to DB2 from Sybase select statement file 101
6.1.7 Load data to DB2 from Sybase with identity columns 102

6.2 Data conversion using DataJoiner . 104
6.2.1 Conversion scenario . 104
6.2.2 Installing and configuring DataJoiner for AIX 105
6.2.3 Exporting tables using DataJoiner . 111
iv DB2 UDB V7.1 Porting Guide

6.2.4 Importing tables from IXF files . 112
6.2.5 Alter tables . 113

Chapter 7. Application conversion . 115
7.1 SQL statement comparison . 115

7.1.1 Sybase naming conventions . 115
7.1.2 Insert statement . 116
7.1.3 Delete statement . 118
7.1.4 Update statement . 119
7.1.5 Select statement syntax . 119
7.1.6 Select statement differences . 121

7.2 Transaction comparison . 124
7.2.1 Transaction model . 124
7.2.2 Transaction isolation level . 126

7.3 Function comparison . 127
7.3.1 Compatible functions . 127
7.3.2 Sybase functions that have no DB2 UDB equivalent 135
7.3.3 Additional DB2 UDB Version 7.1 functions 139

7.4 Declared temporary tables . 142
7.4.1 Temporary table comparison . 143
7.4.2 Creating temporary tables . 144
7.4.3 Considerations in declared temporary tables 145

7.5 Save point . 147
7.5.1 Setting a save point . 148
7.5.2 Considerations in using save points . 149

7.6 Sybase's global variable . 150
7.6.1 The @@connections global variable . 150
7.6.2 The @@error and the @@sqlstatus global variables 151
7.6.3 The @@identity global variable . 151
7.6.4 The @@parallel_degree global variable 153
7.6.5 The @@rowcount global variable . 154

7.7 Trigger conversion . 155
7.7.1 Sybase and DB2 triggers . 156
7.7.2 Conversion of an insert, update trigger 157
7.7.3 Conversion of cursor processing in Sybase triggers 160
7.7.4 Conversion of Sybase delete triggers . 162
7.7.5 Conversion of Sybase triggers: if update (column name) 162
7.7.6 Creating triggers from the command line processor 164
7.7.7 Creating triggers from the Control Center 165

7.8 Stored procedure conversion . 168
7.8.1 Setting the environment to build SQL procedures in DB2 UDB . 168
7.8.2 Converting stored procedures from Sybase to DB2 170
7.8.3 DB2 Stored Procedure Builder . 194
v

7.9 Embedded SQL program conversion . 199
7.9.1 Statements comparison . 200
7.9.2 Connection . 202
7.9.3 Transaction . 203
7.9.4 Select statement. 204
7.9.5 Example of embedded SQL program . 204
7.9.6 Executing a stored procedure . 207
7.9.7 SQL Communication Area (SQLCA) . 210
7.9.8 SQL Descriptor Area (SQLDA) . 211

7.10 Client-Library program conversion . 212
7.10.1 Initialization and termination . 213
7.10.2 Executing SQL statement . 217
7.10.3 Diagnostics and processing errors in CLI programs 225
7.10.4 Setup of environment for CLI application programs 227

Appendix A. Conversion tools . 229
A.1 SQL Conversion Workbench . 229

A.1.1 Installation overview . 230
A.1.2 Unloading metadata . 231
A.1.3 Loading metadata . 233
A.1.4 Editing metadata. 235
A.1.5 Data migration . 238
A.1.6 Stored procedure conversion . 238

A.2 Other tools . 241
A.2.1 Data Junction . 241
A.2.2 PLATINUM ERwin . 242

Appendix B. Sybase and DB2 UDB terms . 243
B.1 Sybase versus DB2 UDB terminology . 243
B.2 Sybase versus DB2 task comparison . 243
B.3 Sybase logging versus DB2 UDB logging. 246

Appendix C. Special notices . 247

Appendix D. Related publications . 251
D.1 IBM Redbooks . 251
D.2 IBM Redbooks collections . 251
D.3 Other resources . 252
D.4 Referenced Web sites . 253

How to get IBM Redbooks . 255
IBM Redbooks fax order form . 256
vi DB2 UDB V7.1 Porting Guide

Index . 257

IBM Redbooks review . 263
vii

viii DB2 UDB V7.1 Porting Guide

Figures

1. Application overview . 5
2. Lab environment . 6
3. Three stages of conversion . 16
4. Sybase server with employee database . 26
5. Segments on device_1 and device_2 . 27
6. Sybase Server with employee database segments 30
7. Table spaces and containers . 31
8. sp_helpdb output . 54
9. sp_helpdb output using database name option . 55
10. sp_helpsegment output . 56
11. Screen of sp_help table01 . 57
12. Sybase objects by type . 59
13. SQL to create output file with view names for DEFNCOPY. 60
14. Output file defncopy.views . 60
15. Sybase Central screen display . 62
16. sp_helpsort output . 65
17. sp_spaceused stored procedure . 69
18. DB2 create table space DDL . 70
19. Create DMS table space . 71
20. Create user temporary table space . 71
21. sp_help table01 output. 76
22. Check for duplicate names in your Sybase database 78
23. sp_helprotect stored procedure . 86
24. Table conversion using DataJoiner . 105
25. Nested transactions in Sybase . 125
26. Transactions in DB2 UDB . 125
27. Creating a trigger from the Control Center (1) . 165
28. Creating a trigger from the Control Center (2) . 166
29. Creating a trigger from the Control Center (3) . 167
30. Creating a trigger from the Control Center (4) . 167
31. Cursor scopes in Sybase . 179
32. How to get cursor from stored procedure in DB2 UDB 180
33. Simulate Sybase cursor in DB2 UDB. 181
34. Case 1: No save point in a Sybase stored procedure 182
35. Case 2: A save point in a Sybase stored procedure 182
36. A save point in a DB2 UDB stored procedure . 183
37. Stored Procedure Builder: inserting a new procedure 195
38. Stored Procedure Builder: using the wizard. 196
39. Stored Procedure Builder: generated procedure 197
40. Stored Procedure Builder: testing a procedure . 198
© Copyright IBM Corp. 2000 ix

41. Stored Procedure Builder: generated Java procedure. 199
42. Client-Library initialization and termination . 214
43. CLI initialization and termination . 216
44. Select statement processing in a Client-Library application 219
45. Select statement processing in a CLI application 223
46. SQL-CW First Steps menu . 231
47. Login window for SQL Server unload . 232
48. SQL Server unload window . 232
49. Unloaded metadata . 233
50. Load metadata to repository . 234
51. Login to repository database . 234
52. Load repository errors . 235
53. Repository edit window . 236
54. Generate DDL . 237
55. DDL file and scripts created. 237
56. Procedure batch conversion selection window . 238
57. Stored procedure conversion. 239
58. *.err file sample . 239
59. Interactive convert screen . 240
60. Interactive stored procedure output . 241
x DB2 UDB V7.1 Porting Guide

Tables

1. Summary of strategy characteristics . 11
2. Summary of conversion methodologies. 14
3. Files in an SMS table space container. 35
4. Comparing SMS, DMS, and Sybase disks . 36
5. DB2 files. 38
6. Sybase data types supported . 41
7. Character data types . 43
8. Numeric data types . 44
9. Datetime data types . 45
10. Binary data types . 47
11. Other data types . 49
12. SQL and C/C++ data type comparison . 52
13. PAGESIZE and maximum table size, # columns and row size 69
14. Style number and output format for the convert function 98
15. IMPORT utility and LOAD utility. 99
16. Wild card character comparisons. 122
17. Transaction isolation levels . 126
18. Functions that map from Sybase to DB2 with same names 128
19. Functions that map from Sybase to DB2 UDB with different names 129
20. Possible Sybase date formats . 131
21. Possible DB2 date formats . 131
22. First parameter for DATEDIFF and TIMESTAMPDIFF 132
23. Examples of conversion from STUFF to INSERT 134
24. Functions Available in DB2 UDB V7.1 . 139
25. Temporary space comparison between Sybase and DB2 UDB 143
26. Temporary tables comparison between Sybase and DB2 UDB 146
27. Sybase - DB2 trigger differences . 156
28. Embedded SQL statements comparison . 200
29. Fields of SQLCA structure in Sybase . 210
30. Fields of SQLCA structure in DB2 UDB. 211
31. Fields of SQLDA structure in Sybase . 211
32. Fields of SQLDA structure in DB2 UDB. 212
33. DB2 UDB CLI function return codes . 225
34. Sybase versus DB2 UDB terminology . 243
35. Sybase versus DB2 UDB comparable tasks . 244
© Copyright IBM Corp. 2000 xi

xii DB2 UDB V7.1 Porting Guide

Preface

This IBM Redbook is intended to help database administrators and system
designers perform database and application conversion from Sybase to DB2
Universal Database (DB2 UDB) Version 7.1. It contains a description of the
conversion process and suggestions on how the mapping of database
features may be accomplished.

The target audience of this redbook is database administrators and system
designers with Sybase and/or DB2 UDB for AIX background.

This book was written from the AIX operating system perspective, and some
commands shown in this book may not be available on other operating
systems. However, all sections in this redbook except some operating system
specific commands and operations should be applicable for database
systems on non-AIX operating systems such as Solaris and Windows NT.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

Tetsuya Shirai is a Project Leader at the International Technical Support
Organization, San Jose Center. He worked in Tokyo, Japan before joining the
San Jose ITSO. He has been with IBM for eight years, working for the last
four years with DB2 UDB products. He has worked in the area of DB2
services, teaching classes to both customers and IBMers. He has also
provided consulting services to DB2 customers worldwide.

Kenji Horino is an IT Specialist in Japan. He has six years of experience in DB2
Universal Database and provides support for customers using DB2 UDB on the
PC and UNIX platforms. His areas of expertise include designing and
performance tuning for data management systems. He worked as a DB2 DBA in
the Nagano Olympic project and achieved great success.

John Russell is a Sybase DBA at a customer’s location for IBM Global
Services. He has been with IBM Global Services for nine years and has a
total of 33+ years experience in the IT profession serving in a variety of
technical and management roles prior to joining IBM as part of an outsourcing
agreement in 1991. He has also done over 30 Operating System upgrades
and conversions for customers in the DOS/VSE arena. He has been a
Sybase DBA for five years, and has had considerable experience with
© Copyright IBM Corp. 2000 xiii

Sybase releases 4.92, System 10, System 11, and Sybase Adaptive Server
release 12.0, as well as some Oracle and DB2 experience.

John V. Partridge Jr. is an IT Specialist with the Software Migration Project
Office (SMPO). He has eight years of experience in database management
systems including DB2 and Sybase, six years as an independent database
consultant, and four years in designing and implementing data warehouse
solutions.

Art Sammartino is a Software IT Specialist with the Software Migration
Project Office (SMPO). He has been working for IBM for one year providing
technical support, and engaging in proofs-of-concept, for competitive
relational DBMS migrations to IBM DB2. Art is based in White Plains, NY.

Thanks to the following people for their invaluable contributions to this
project:

Nick Samanic
Marina Greenstein
Dominic Marrese
Martin Spratt
IBM Software Migration Project Office

Patrick Dantressangle
IBM Silicon Valley Laboratory

Amyris Rada
IBM Toronto Laboratory

John Field
IBM Watson Research Center

Paolo Bruni
Mary Comianos
Emma Jacobs
Yvonne Lyon
Deanna Polm
International Technical Support Organization, San Jose Center
xiv DB2 UDB V7.1 Porting Guide

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 263 to
the fax number shown on the form.

• Use the online evaluation form found at ibm.com/redbooks

• Send your comments in an Internet note to redbook@us.ibm.com
xv

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi DB2 UDB V7.1 Porting Guide

Chapter 1. Introduction

This IBM Redbook is intended to help database administrators and system
designers who perform database and application porting from Sybase
Adaptive Server to DB2 Universal Database (DB2 UDB) Version 7.1. We
have chosen a sample scenario based on a subset of a real customer’s
application running on Sybase Adaptive Server and we have used it
throughout the project. In this book, we will describe the porting process
which we have performed and give suggestions on how the mapping of
database features can be accomplished.

We have used ManTech SQL Conversion Workbench (SQL-CW) Version 3.0
Beta, which is also called the Stored Procedure Converter Tool (SProCT),
throughout the project. However, since the migration tool technology is
changing and you may want to use different tools, or even perform migration
projects without tools, we avoid showing just how to use SQL-CW in each
chapter. Rather, we explain the most important aspects of porting databases
and applications, including differences in database options, data definition
languages (DDL), SQL statements, data conversion, and application
conversion. Appendix A, “Conversion tools” on page 229 contains a brief
description of SQL-CW. See this appendix for ideas on how to use SQL-CW.

The application we have chosen cannot be valid for all possible permutations
of application variables. Therefore, we have also tried to go beyond our
sample scenario and to extrapolate to more general considerations
applicable to a larger variety of environments.

This chapter contains an introduction to the project and a summary of our
conclusions.

1.1 Decision to port databases and applications

Porting databases and applications across different database management
systems (DBMSs) is certainly not a trivial task. The decision to port is
generally made at a high level, at a time when there is full justification in
terms of costs and expected returns on investment. The major issues that
bring up the need to port, and which are the main components for building a
business case, are related to the following areas.

• Performance:

Aspects of performance include scalability, availability, data movement,
response time, and the ability to support multiple query workloads.
© Copyright IBM Corp. 2000 1

• Configuration costs

Realistic cost assessment is required, based on overall development,
maintenance, and tuning cost and the full exploitation of current
investments, both in terms of skill sets and reduced licence costs.

• Data infrastructure

Data is no longer an application-specific resource, but an enterprise-wide
tool to provide critical business information for a competitive advantage.
Often it is not enough to navigate through the data, but it is necessary to
invest in the infrastructure in order to more easily integrate enterprise
views of data.

The deployment of enterprise resource planning, customer relationship
management, and business intelligence systems may raise the need to
reconsider the current choice of environment for important applications as
well as to appreciate the strength and value of DB2 UDB.

DB2 UDB is a database leader in several technologies, and offers true
multi-platform support, reliability, and scalability from a single processor to
symmetric multiple processors, and to massive parallel clusters with
terabytes of data and/or thousands of users. This can be a major motivation
to convert your database system to DB2 UDB.

Also, a large number of industry solution providers have adopted DB2 UDB to
support their applications or adapted their tools to support DB2 UDB. These
solution providers include SAP, Baan, Peoplesoft, Siebel, and more. You can
buy these solutions ready-made to meet your requirements, rather than
developing them by yourself. This is another reason to choose DB2 UDB.

1.2 Project overview

The project consisted of taking an existing customer application based on
Sybase Adaptive Server and porting a meaningful subset of it to use DB2
UDB for AIX.

The chosen application is a stored procedure based application which is a
centralized scheduling tool for administering DBA type functions such as
updating statistics and dumping databases and logs for multiple DBMS clients
(ORACLE, Sybase, Informix, MS SQL Server, and so on). Please see
Chapter 2, “Project scenario” on page 5 for more information on the customer
application chosen.
2 DB2 UDB V7.1 Porting Guide

The database design, the data, and a subset of the application were
successfully converted, although unfortunately, in the short time available, we
were unable to port all the application codes, including 115 stored
procedures. Nevertheless, we gained enough experience to share with you
and demonstrate the viability of the porting from Sybase Adaptive Server to
DB2 UDB.

1.3 Summary of considerations

In our project, we successfully converted the database design, the data, and
a subset of the application from Sybase Adaptive Server to DB2 UDB Version
7.1.

Both Sybase and DB2 UDB are based on the relational logical model, and we
found that they had many similarities in terms of functions. Thus, converting
the database objects including the tables and indexes from Sybase to DB2
UDB was not such a challenging task.

Moving the actual raw data from Sybase to DB2 UDB was not a complicated
undertaking either. We unloaded the data from the source Sybase tables to
delimited ascii files using the Sybase BCP utility and populated the target
DB2 UDB tables using the DB2 IMPORT or LOAD utility. In our scenario the
amounts of data were small. If large amounts of data must be moved, using
the LOAD utility would certainly be the more efficient approach, providing
better performance and allowing no logging.

For DATETIME and SMALLDATETIME columns of the Sybase source tables, we had
to use SELECT statements with the CONVERT function to unload and change the
format of the data. This was because the Sybase BCP utility unloads DATETIME

or SMALLDATETIME data into the format which is not acceptable to the DB2
IMPORT or LOAD utility.

To convert the data, we experimented with an alternative solution using
DataJoiner. DataJoiner enabled us to unload data from Sybase tables into
integrated exchange format (IXF) files which also contain table and index
definitions. Using DataJoiner made the database and data conversion
process easy because we could accomplish the tables, indexes, and data
conversion at a time by executing the IMPORT utility with these unloaded IXF
files.

Porting the stored procedures was a more complicated but certainly
successful task. The factor that contributed to complexity was Sybase
Transact-SQL, which has its own extensions in addition to the SQL92 at the
Entry-level, and was used all the stored procedures in our scenario. We
Chapter 1. Introduction 3

converted Sybase SQL stored procedures into DB2 SQL stored procedures,
which is available in DB2 UDB Version 7.1, and confirmed that the stored
procedure conversion from Sybase to DB2 was feasible.

Porting triggers was also a challenging task. Since Sybase triggers allow a
wider variety of SQL statements to be written in the trigger body than DB2
triggers do, we needed to make some modifications in the trigger body. We
will show how we could convert Sybase triggers in 7.7, “Trigger conversion”
on page 155.

We used the ManTech SQL Conversion Workbench (SQL-CW) Version 3.0
Beta throughout the project and it was the great contributing factor to our
success. It generated all the DDLs to build the database objects in the target
DB2 database, script files which could unload and load data with small
modifications, and enabled us to perform the automatic conversion of the
stored procedures. We strongly recommend using such a conversion tool to
assist you when migrating from Sybase to DB2 UDB. Please check the
following Web site for the latest information on the migration tool from Sybase
to DB2 UDB:

http://www-4.ibm.com/software/data/db2/migration/

The feasibility of the porting operation was proved; it can certainly be done,
given circumstances similar to the pilot effort, and assuming that there are
sufficiently experienced and skilled people available on both sides of the
conversion so that the objectives can reached quickly. Also, communication
with the site systems personnel needs to be clear, effective, and flow freely,
since system support was crucial to the success of our project.
4 DB2 UDB V7.1 Porting Guide

Chapter 2. Project scenario

This chapter describes our project scenario, which consisted of a customer’s
application running on the Sybase Adaptive Server.

2.1 Source database system

The chosen customer application is a stored procedure base application,
which is a centralized scheduling tool for administering DBA type functions
such as updating statistics and dumping databases/logs for multiple DBMS
clients (ORACLE, Sybase, Informix, MS SQL Server, and so on).

This application is initiated via the cron, which is a UNIX daemon process that
can invoke shell commands at specified dates and times. The application
wakes up every minute to check a schedule table in the Sybase database and
determine whether any task is scheduled to run. If there is a task which needs
to run, then the application executes a script processing a specific activity,
such as updating statistics, dumping databases, and so on.

Figure 1 shows an overview of the application.

Figure 1. Application overview

scripts

scripts

scripts

Oracle DB

Sybase DB

Informix
DB

Database Server (AIX, Sybase DB)

schedule DB
(Sybase)

cron daemon

Application
© Copyright IBM Corp. 2000 5

2.2 Project scope

The source Sybase database consists of 35 tables, 30 views, 30 indexes, 115
stored procedures, and 16 triggers.

As mentioned in 1.2, “Project overview” on page 2, not all of the database
objects (including 115 stored procedures) have been ported to DB2 UDB in
our project. Our goal was converting all the database design, the data, and a
subset of the application to confirm the feasibility of the conversion from
Sybase to DB2 UDB, and to find common pitfalls and workarounds.

Figure 2 shows our lab environment. We have installed both Sybase Adaptive
Server and DB2 UDB on the same RS/6000, and we perform the database
conversion, data conversion, and application conversion within the same
machine.

Throughout the project we utilized the ManTech SQL Conversion Workbench
(SQL-CW), which works on the Windows NT workstation. SQL-CW extracts
the metadata describing the source database structure and generates DDLs
and unload/load scripts to perform the database and data conversion from
Sybase to DB2 UDB. SQL-CW generates all the DDLs and scripts on the
local Windows workstation, therefore, we have executed these DDLs and
unload/load scripts from the Windows workstation though the Sybase Client
and DB2 Client.

As mentioned in 1.2, “Project overview” on page 2, in addition to the data
conversion using the unload/load scripts that SQL-CW generated, we
experimented with an alternative solution using DataJoiner.

Figure 2. Lab environment

RS/6000 Server Windows NT Workstation

Sybase
Database

DB2
Database

ManTech
SQL-CW

Sybase Open
Client

DB2 Client

DataJoiner

Repository
Database

(DB2)
6 DB2 UDB V7.1 Porting Guide

2.3 Hardware and software configuration

This section describes the hardware and software configuration used for the
lab environment on which our project was carried out.

Hardware configuration
As shown in Figure 2, our lab environment consisted of an RS/6000 server
and Windows NT clients. Their specifications were as follows:

• RS/6000 J50 (4 x 200 MHz CPUs with 1 GB of RAM, and 22.5 GB of disk)

• IBM PC 300 GL (333 MHz CPU with 256 MB of RAM, and 15 GB of disk)

Software configuration
On the RS/6000 server, we have installed the following software:

• AIX 4.3.3 + PTF

• Sybase Adaptive Server for AIX Version 12

• DB2 Universal Database for AIX Enterprise Edition Version 7.1 + FixPak 1

• IBM C/C++ for AIX Version 3.6.6

• DataJoiner for AIX Version 2.1.1

On the PC client, we have installed the following software:

• Sybase Open Client Version 12

• DB2 Universal Database for Windows NT Enterprise Edition Version 7.1+
FixPak 1

• ManTech SQL Conversion Workbench (SQL-CW) Version 3.0 Beta
Chapter 2. Project scenario 7

8 DB2 UDB V7.1 Porting Guide

Chapter 3. Conversion process

This chapter looks at the conversion process and the different steps involved
in the planning and execution of a successful conversion. For further
information, refer to Planning for Conversion to the DB2 Family: Methodology
and Practice, GG24-4445.

The topics covered are:

• Strategies available
• Conversion methodologies
• Planning the conversion
• Conversion considerations

3.1 Strategy and conversion methodologies

In performing a conversion, you need to decide on the following:

1. The overall strategy

This is the general approach to the question of moving to DB2 UDB.
Is speed the most important parameter, or perhaps the method involving
the least amount of risk?

2. The starting point

What is the first application to be moved to DB2 UDB? Is it just part of a
total application? How will coexistence be handled?

3.1.1 Strategy definition
There are several strategies that could be used to convert the system, each
may be better suited to different environments. Table 1 on page 11
summarizes the strategies available and lists the advantages and
disadvantages of each.

3.1.1.1 Big Bang
In this strategy, all applications and data are moved to DB2 UDB and go live
simultaneously. This is useful when speed of conversion is the overriding
consideration; however, this strategy has the highest risk.
© Copyright IBM Corp. 2000 9

3.1.1.2 Piece by Piece
In this strategy, definable applications or pieces of them, and the data that
they use, are migrated to DB2 UDB one at a time. This strategy implies that
all applications and data will eventually be converted to DB2 UDB. No
enhancements are made to the application during its conversion, and future
enhancements are made in DB2 UDB. This strategy is indicated when the
primary considerations are to reduce risk, keep track of projects, and gain
experience as the work proceeds.

3.1.1.3 Tight Coexistence
This strategy means that the old systems are kept and new systems are
developed with new enhancements for using data in DB2 UDB. As systems
come up for redevelopment, they are redeveloped using DB2 UDB.

3.1.1.4 Loose Coexistence
This strategy usually involves a management information system (MIS) or
reporting system. A copy of the data is loaded into DB2 UDB and accessed
using report programs. This strategy means some of the data is kept multiple
times, but operations continue as normal. Copies of the data can be used as
part of conversion, and they can be kept up-to-date by asynchronous update
or periodic copy.

3.1.1.5 Combinations
A combination of strategies may be the best solution. One option is to set up
a read-only MIS system, first to handle reporting, convert a few existing
report programs to use the MIS and provide extra reporting through DB2
UDB.

Where the Big Bang strategy is not appropriate, it may be necessary to
migrate some applications piece by piece and then follow up with a series of
“little bangs” where two or three applications are migrated together with their
common data. It may be that some applications are in good shape, but others
are in poor shape and need rewriting. This may mean that different methods
will be employed for different applications, but it does not alter the basic
strategies.

Table 1 summarizes the main advantages and disadvantages of each
strategy.
10 DB2 UDB V7.1 Porting Guide

Table 1. Summary of strategy characteristics

3.1.2 Conversion methodologies
There are several methodologies that could be considered, any of which
could be correct in different circumstances. Once a conversion methodology
has been selected, it will then set the way for data design: programs, testing,
tools, and any data cleaning.

Table 2 on page 14 gives a summary of the conversion methodologies
available and their advantages and disadvantages.

3.1.2.1 Translation
Translation occurs when the application Database Management System
(DBMS) calls are translated one-for-one into DB2 SQL calls. When applied to
data, translation means that the data is also copied one-for-one into DB2
UDB with no allowances made for the advantage of the large number of DB2
data types.

Strategy Advantages Disadvantages

Big Bang Fastest for total conversion High risk

No coexistence problems Long time before first benefits

No duplicated work force Complex change
management

Piece by Piece Low risk Long project

Fast way to get some benefits
of DB2 UDB

Need to handle coexistence

Workforce adjusts overtime Dual platforms for some time

Tight Coexistence Enhancements added Need very good dual update
mechanism

Tools possible Need to open programs on
multiple occasions

Each conversion separately
justified

Dual platforms indefinitely

Loose Coexistence Management information
greatly enhanced

Does not fix operational
problems

Low risk Hard to get up-to-the-minute
information

Few coexistence problems
Chapter 3. Conversion process 11

Translation means modifying the programs to access the new database and
using the old data layout for the data; it is a one-for-one line translation of the
data access language in the source code. Translation tries to make no
changes to the business or data logic parts of the programs and no structural
changes to the data layout. Where speed of conversion is the highest priority,
translation allows for fast migration.

In our project, we have used the translation conversion method.

3.1.2.2 Transparency
With transparency, the data is migrated to DB2 UDB, and a special program
is written to intercept calls to the old DBMS. This program will translate the
calls into DB2 SQL transparently and routes the call to DB2. The program
remains unchanged and can be executed with the data in either database
system. Transparency enables all the data to be moved to DB2 and the
programs to be rewritten or changed one at a time. It also offers a migration
path for businesses with very large databases that require very high
availability and administrators who do not have time to unload and reload the
data.

DataJoiner is a product from IBM that can help with this method. It allows
transparent access to data wherever it may reside with the application, while
being unaware of where the data is coming from. By using DataJoiner,
applications can access the DB2 and Sybase databases at the same time,
thus allowing you to join a DB2 table with a Sybase table in one SQL
statement. DataJoiner can also be used to assist in some of the other
methodologies which use a coexistence strategy. It can also be used as a tool
to move the data from Sybase into DB2 UDB (see 6.2, “Data conversion using
DataJoiner” on page 104).

3.1.2.3 Re-engineering
Re-engineering allows us to alter the data and programs to be compatible
with good DB2 UDB design without having to rethink the whole design.

The data is adapted to a new data model, and the program data calls are
adapted to fit the new target data model. For the applications, only the
database calls and data logic parts of the program are changed with limited
alterations to the database logic consistent with the new design.
Re-engineering would have only minimal impact on the business-logic part of
the program.

This method is good for testing for equivalent function and for future
enhancements. It should perform well, but will take longer than translation.
12 DB2 UDB V7.1 Porting Guide

3.1.2.4 Reverse engineering
Reverse engineering is a form of re-engineering that involves capturing the
old design into models, modifying them, and generating new programs and a
new DBMS design. Reverse engineering usually means using tools to
recover the design of the original data into a reconstructed data model and
recover the application into a new process model. These models can then be
modified to improve the design. The new improved models are then used to
generate (forward-engineer) DB2 Data Definition Language (DDL) for the
database and new code for the applications.

Reverse engineering is a very valid way to improve applications and data, but
to be really effective, good tools are needed. Tools such as PLATINUM Erwin
are available to help automate this process.

3.1.2.5 Redevelopment
Here, the whole application is redeveloped according to user requirements. In
the case of data, it means that the data model is rethought from scratch using
requirements from the users. Redevelopment can use the data modeling
tools. If data modeling tools are used to model the process, future
enhancements mean only changing the model and regenerating code.

Choosing this course of action requires the purchase of a suitable package
since this is equivalent to writing an application suite from scratch.

3.1.2.6 Corporate model
This refers to the generation of corporate-wide models. Instead of just one
application suite, the entire business can be modelled into a corporate
business data model and a corporate business process model. The DBMS
design and code may be generated from the models and any changes or
enhancements needed are reflected in the model’s original and newly
generated code. Each application suite may be rewritten or regenerated one
by one to access a new corporate-wide database.

Although costly in time and effort, it is a method that potentially provides the
greatest benefits. It allows systems to be brought together using an
integrated corporate database.

3.1.2.7 Combinations
To some extent, the methods can be mixed. It is possible to use one method
for data and a different method for the applications. There is the possibility of
using one method and switching to another. It may be that time is of the
essence and therefore a quick translation just to move the DBMS is required.
Chapter 3. Conversion process 13

As soon as that conversion is complete, sections of the DBMS and relevant
programs can be re-engineered.

Table 2 summarizes the main advantages and disadvantages of each
conversion methodology.

Table 2. Summary of conversion methodologies

Methodology Advantages Disadvantages

Translation Easiest method Few advantages of DB2 UDB

Easy for tools Design inflexible for future

Possible to use in two-stage
approach

Transparency Data may be restructured Performance maybe a
problem

Applications can be rewritten
later

Module difficult to write

Low risk Conversion takes much
longer

Re-engineering Obtain advantages of DB2
UDB

Relatively longer time

Allows limited redesign

Reverse engineering Design may be optimized for
performance

Tools do not handle all
situations

Later enhancements easier Less efficient code from tools

Redevelopment Known process Much longer development
time

Future maintenance easier Existing investment lost

Corporate models Business modeled as a whole Large up front investment

Less redundant code Existing investment lost

Package tools available Need to manage changes
14 DB2 UDB V7.1 Porting Guide

3.2 Planning the conversion

A DBMS conversion can sound simple — just collect all the programs and
change the DBMS calls from the old data language to DB2 SQL calls.
However, consider these questions:

• Which application will be converted first?

• What is known about the makeup of the programs?

- How many are there?
- Are they all the same language?
- Do they all make DBMS calls?
- How good is the current documentation?
- Do all programs need converting?

• Are the applications independent?

• If the data is moved to DB2 UDB for use by the new system, how will
updates be synchronized?

• Can a single application system be split so that it can be moved a piece at
a time?

• How much time is allocated for the conversion process?

• How good is the data model of the existing system?

• How will the results be tested?

These are just some of the considerations that must be fully addressed to
have a successful conversion. A decision must also be made as to which
strategy and conversion methodologies to use.

These issues are addressed via the Three Stage Approach, as shown in
Figure 3.

1. Stage one

Before any conversion can be contemplated, there is a need to take stock
of the current systems. This stage takes an overview (portfolio analysis) of
the system and considers what options will fulfill most requirements to
produce a cost effective conversion strategy.

2. Stage two

The second stage tests the feasibility of the output produces by stage one.
It puts plans in place and tests them with a pilot conversion to see if the
assumptions made are correct.

3. Stage three
Chapter 3. Conversion process 15

Stage three is the main conversion. It is where the majority of the work
takes place. This is implementing the plan worked out in Stage Two, then
cutting the new system over to production.

Figure 3. Three stages of conversion

3.2.1 Stage one: defining the strategy
Before any conversion can be contemplated, current systems need to be
evaluated. The information obtained in stage one is essential for deciding
which strategy and which conversion method to use.

3.2.1.1 Survey
This is a short task where the area of the proposed conversion is set down on
one page. The purpose of this short document is to set the boundaries of the
subsequent project. It sets out which system or systems are candidates for
the conversion, the programming languages involved and the data sources.

Survey, Portfolio Analysis & Strategy

Stage 1

Deliverables

Deliverables

Planning & Pilot

Stage 2

Successful Conversion

Strategy, Start Point, Method, Tools

Tested Proof of Concepts

Implementation & Cutover

Stage 3

Deliverables
16 DB2 UDB V7.1 Porting Guide

3.2.1.2 Business requirements
The most important aspect of conversion is contained here. This sets out
what is expected from the conversion and is used to guide later decisions. It
effectively sets down the business requirements and other criteria that must
be achieved for the project to be a success.

3.2.1.3 Portfolio analysis
The goal of the portfolio analysis is to get an idea of the state of the systems,
the size of the task, the effects on data used by multiple systems and any
special difficulties to account for.

3.2.1.4 Strategy definition
There are several ways that you could go forward and many methods you
could use to actually convert the system, all of which could be correct in some
instances.

Now that the present position is understood, the main decisions can be made
about the applications. These include:

• Whether to adopt a strategy to move everything at once (Big Bang) or to
move small pieces at a time (Piece by Piece).

• Whether to move all the reporting programs

• Which application to move first

• Which programs and data to use for a pilot

3.2.1.5 Conversion methods
With the overall strategy set, the method can then be selected and the
requirements set for the data layout and DB2 features, including:

• What method of conversion will suit the programs and data best

• What to do about data cleaning

• What testing strategy to use

• What enhancements should be made, and when

3.2.1.6 Deliverables
The deliverables of this first stage are:

• A description of the business benefits expected

• An understanding of the migration process

• An overall strategy

• The place to start the migration process
Chapter 3. Conversion process 17

• Scope of the pilot

• List of issues

The biggest factor influencing success is going into the new territory with
awareness of both the pitfalls and the rewards. Working through Stage One
will give an understanding of the process, a set of requirements, and the first
gross estimate of the conversion task.

3.2.2 Stage two: testing the concept
The objective of stage two are to put proper plans in place and to test the
theories with a pilot conversion, the results of which are then used to adjust
the plans for the final stage. There are a number of relatively small, but vital,
tasks that need to be done:

Data layout The database design must be carefully checked and a
first cut DB2 design produced.

Programs The programs need checking too. An inventory of where
they are by categorizing them into Online Transaction
Processing (OLTP), batch and reporting applications.

Testing The test strategy decided in stage one needs to be
written, set up and tested.

Performance A performance plan needs to be established. It should
identify critical processes and specify how changes are
to be made.

Change control A change control system must be put in to place.

Data movement A plan needs to be put in place for data movement, that
is, the unloading, reformatting and loading of the actual
data.

Set up DB2 UDB If DB2 UDB is not installed, then installation needs to
take place before any pilot can run. If DB2 UDB is
already in use, then it is preferable to establish a
separate system for the conversion work.

Pilot The pilot takes the previously chosen applications and
runs them through the conversion process.
18 DB2 UDB V7.1 Porting Guide

Review At the end of the pilot, a thorough review should be
made, and the results should be fed back into the plans
and adjustments made.

3.2.2.1 Deliverables
The deliverables for stage two can really be expressed as a tested proof of
concept. Specifically, there should be:

• Tested proof that all the components work

• A program inventory

• A data inventory

• Old data column to new data column cross reference

• Old program name to new program name cross reference (if applicable)

• A project plan for the entire conversion:

- Application plan showing how the changes will be tackled
- Data movement plan
- Performance test plan
- Change control plan
- Data cleaning
- Test plan

• Database design

• Critical process list

• A data movement plan

• Documented results of the pilot

• The first few converted programs

• Results of the review

Done properly, the second stage shows that the project is viable, highlights
any areas of weakness that can be corrected and provides feedback to be
used in the main and final stages of the plan.

3.2.3 Stage three: implementation and cut-over
By this time, although there is much left to do, the rest should be
straightforward. It is now a matter of making sure the plan is correctly
implemented.
Chapter 3. Conversion process 19

3.2.3.1 Implementation
This is the implementation of the plans worked out in stage two. Here the
programs are converted, tested and changed, if required, via the change
control plan already set up.

3.2.3.2 Data cleaning
The accuracy of the actual data needs to be assessed for quality. Depending
on the errors, this may require anything from a small to a significant
investment. The most common corruption is that data is entered incorrectly in
the first place. Sometimes data has been entered incompletely, and the
additional data was never entered.

During the data load using the DB2 LOAD/IMPORT utility, the utility checks
the properties of the data, and it will refuse to load any records that are
obviously wrong, placing them instead in a discard file. This is one method
that can be used for assessing errors; however, the utility cannot detect
where the wrong values have been entered.

The data cleaning strategy identified in stage one and tested in stage two
should be used to verify the data and correct any errors.

3.2.3.3 Data cut-over
Here the data is unloaded, reformatted and loaded into DB2. The plans for
the applications are bound, the libraries switched and the new system
brought up.

3.2.3.4 Testing
Testing is very likely to take 50 percent or more of the time taken to convert
the DBMS. Testing will be an iterative process and it is important that
problems are documented and the change control process is followed. During
conversion, testing differs from normal application development in these
ways;

1. There is a need to test every function and every part of the code to ensure
that it all still performs in the same way.

2. The tests must be repeatable and repeated to ensure that errors are not
reintroduced.

3. The tests must ensure that the program still functions the same.

4. Automated test tools can shorten the time taken for testing by providing
repeatable automatic comparison and regression testing.
20 DB2 UDB V7.1 Porting Guide

5. Stress testing needs to be a part of the testing to ensure that the whole
application will function well and to check that things, such as deadlocks,
have not been introduced.

3.2.3.5 Fallback plan
In case of unforeseen problems, a fallback plan needs to be set up. This
should be business-as-usual, as customers are used to changing levels of
software, both from themselves and from software vendors.

3.2.3.6 Production cut-over
The production cut-over process should be carefully planned after ensuring
all applications are working properly and performance issues are resolved.
Care must be taken to coordinate the recreation of the data, if necessary to
facilitate a clean cut-over.

3.2.3.7 Consolidation
The period of post-live consolidation needs to be defined. The system needs
to run for a month or so before any new enhancements are added. Further,
when the conversion is declared complete, do not delete the old system;
archive it.

3.2.3.8 Deliverables
This is, of course, the new system working as planned with DB2 UDB.

3.3 Conversion considerations

This section highlights some of the considerations found during the many
conversions to DB2 that have already been completed. These are not unique
to a particular environment and may very depending on your specific
environment; therefore any, all or none of these considerations may apply.

• One percent of source code is lost.

When it comes to actually converting every program, some source code
cannot be found.

• Ten percent of the source code does not match the production object
code.

• Sixty percent of the program inventory needs to be converted.

This relates to redundant programs, unused programs, reporting
programs, programs without any DBMS calls, and those that need
rewriting anyway.
Chapter 3. Conversion process 21

• Testing and fixing will take over 50 percent, and may take up to 80 percent
of the project time.

• Sixty percent of program problems are unrelated to conversion.

Problems due to unsuitable conversion do occur, but the majority of issues
that surface are due to:

- Bad source code
- Known bug in original code
- Latent bug that is found, due to new environment
- Latent bug that is found, due to more comprehensive testing
22 DB2 UDB V7.1 Porting Guide

Chapter 4. Database structure and data types

This chapter discusses and compares the database structures and supported
data types between Sybase and DB2 UDB.

4.1 Database structure comparisons

The Sybase environment consists of the Sybase database server and one or
more user databases within the Sybase database server. There can be
multiple database servers to support the user’s requirements. There will
always be a separate server process for the backup functions.

DB2 uses instances to support the databases within the machine. A DB2
instance can manage multiple databases. When a database is created, the
database manager creates a separate file system subdirectory for the control
files and table spaces. Multiple instances can be used also to support user
requirements. The backup utility for DB2 UDB does not require a separate
instance.

4.1.1 Sybase database structure
The Sybase server physical structure consists of databases and UNIX files.
Databases are used for Sybase system and user data. UNIX files are used for
the configuration file and the interfaces file as well as server startup scripts.

4.1.1.1 UNIX files
The following UNIX files are used:

• The configuration file
• The interfaces file
• The server RUN files

When you create the Sybase server using the sybinit command, you will
create the configuration file and the interfaces file in the UNIX directory you
specified in your SYBASE environment variable.

The configuration file contains the options for the Sybase server. The naming
convention is server_name.cfg. You may update the configuration file by using
the sp_configure stored procedure within the database, or you can edit the
file. If you use the sp_configure, the server renames the current file to a
backup file in the format of server_name.nnn where nnn is a simply the next
sequential number. If you update the file using a text editor such as vi, it is
up to you to save a backup of the file.
© Copyright IBM Corp. 2000 23

The interfaces file is used by the Sybase server to communicate with the
Open Client. It contains, among other things, the communications protocol
type, the port address, retry counts.The interfaces file can be updated using
the sybinit utility or a text editor such as vi. If you use a text edit, you must
insure that each line begins with the tab character. The sybinit utility also
preserves a backup copy of the file.

The server RUN files are UNIX shell scripts created by the sybinit utility
when you installed the Sybase server. The file will be created in the install

subdirectory of the path you entered for the SYBASE environment variable. The
naming convention is RUN_server where server is the name you specified in
the install process. There will be a RUN file for each server installed,
including the Backup server. These files can be edited using a text editor if
you need to add or change startup options.

4.1.1.2 Databases
The Sybase server will have the following databases:

• The master database
• The sybsystemprocs database
• The sybsystemdb database (optional, used for two-phase commit)
• The model database
• The tempdb database
• The dbccdb (optional) database
• User databases (as required)

The master database contains global system tables for use by the Sybase
server, for example, the sysdevices table contains information about each
device assigned to the server.

The sybsystemprocs database contains the Sybase suppiled system stored
procedures.

The sybsystemdb database contains the table spt_committab which is used if
you are using the two-phase transaction commit feature.

The model database is used to provide the template for database creation.
You may specify database options such as ‘select into/bulkcopy’ that you
want as a default for any database created using the create database
command.

The tempdb database is used for temporary storage as needed, for example
temporary tables.
24 DB2 UDB V7.1 Porting Guide

The dbccdb database is an optional database you can set up to store options
and output data from the Sybase database consistency check (dbcc) utility.

The user databases are those you create to contain your application data.

4.1.1.3 Sybase data management
Sybase data management uses devices, segments, and tables.

Sybase devices
Devices are defined to Sybase through the disk init command, and size is
determined at initialization time. Once initialized, the size cannot be changed,
neither decreased or increased. If additional space is required for the
database, more devices must be initialized. The device may be either a raw
device or a file system device.

To illustrate the relationship of devices and databases, we created the
example below. When the server was configured, we specified a device
named master to contain the master database. This device was created with a
size of 50 MB. The configuration process also creates two other databases
on the master device, model and tempdb, each with a size of 2 MB.

The configuration process also creates a database name sybsystemprocs, and
here we specified a size of 80 MB for the database, and 500 MB for a device
we named device_1. We now have two devices containing databases:

• The master device is 50 MB and contains:

- The master database: 25 MB
- The tempdb database: 2 MB
- The model database: 2 MB
- Free space: 21 MB

• The device_1 device is 500 MB and now contains:

- The sybsystemprocs database 80 MB

Now we are ready to create our first user database that we will call EMPLOYEE.
We need 500 MB for this database, so we will follow these steps to
accomplish this:

1. Define the device_2 device whose size is 200 MB (102400 x 2 KB)

DISK INIT NAME = device_2, PHYSNAME = ‘/mnt/dbfs/employee/device_2’,
VDEVNO = 10, SIZE = 102400, DSYNC = true.

2. Create the database EMPLOYEE on the device device_1 and device_2

CREATE DATABASE employee ON device_1=320, device2=180
Chapter 4. Database structure and data types 25

You need to execute these commands in the master database.

We now have a database we can begin to create tables and load data. The
configuration now looks like this:

• The master device of 50 MB contains:

- The master database: 25 MB
- The tempdb database: 2 MB
- The model database: 2 MB
- Free space: 21 MB

• The device_1 of 500 MB contains:

- The sybsystemprocs database: 80 MB
- The employee database: 320 MB
- Free space: 100 MB

• The device_2 of 200 MB contains:

- The employee database: 180 MB
- Free space: 20 MB

Figure 4 illustrates this configuration.

Figure 4. Sybase server with employee database

Master
25MB

master
25MB

tempdb
2MB

model
2MB

Free Space
21MB

Master
50MB

sybsystemprocs
80MB

Free Space
100MB

device_1
size = 500MB

Free Space
20MB

device_2
size = 200MB

employee
320MB 180MB
26 DB2 UDB V7.1 Porting Guide

Sybase segments
The Sybase segment gives you the ability to control the placement of table
data or indexes.

Databases are created using the CREATE DATABASE command.

Segments are assigned to devices at the database level.

When a new database is created, you will have three segments:

• logsegment
• system
• default

Figure 5 illustrates segments defined on the device device_1 and device_2.
As you can see, each database has three segments and a segment can span
multiple devices.

Figure 5. Segments on device_1 and device_2

Based on your requirements, you will be able to create segments which allow
placing of your tables and indexes for optimum performance.

device_1 device_2

employee

default

system

logsegment

default

system

logsegment

sybsystemprocs
Chapter 4. Database structure and data types 27

You also may have multiple segments using the same device. The
configuration can be set up allow you to get the best performance. This
should be planned prior to table creation.

When you have created the database, you will be able to use the stored
procedure, sp_addsegment, to create a segment.

If you need to expand the segment for the table, you can use the
sp_extendsegment stored procedure to include another device.

A table can be assigned to only one segment. If that segment runs out of
space, there can be no further allocations for the table even though the
database itself may have adequate space. You must either extend the
segment to another existing device or a new device using the
sp_extendsegment. If you want to use a new device, you need to initialize it and
expand the database to the device in the following manner:

1. Execute the DISK INIT command to initialize a new device.

2. Execute the ALTER DATABASE command to alter the database on the new
device

3. Execute the sp_extendsegment to extend the segment to the new device.

Or you can also add a new segment using the sp_addsegment stored procedure
and direct the table to the segment using the sp_placeobject stored
procedure. This will affect future allocations and existing data will stay as is.

This process can be accomplished without affecting user access to the
database.

For purposes of illustration, we will look at our previous example. We have
created our tables and started testing and found access is slower than we
would like.

We can create an index for a table named empl on the employee_number

column. Further, we can create this index on another device to reduce
contention. The following steps should be completed:

1. Define the device device_3 whose size is 10 MB (25600 x 2 KB).

DISK INIT NAME = device_3, PHYSNAME = ‘/mnt/dbfs/employee/device_3’,
VDEVNO = 11, SIZE = 25600, DSYNC = true

2. Expand the database employee to the device device_3.

ALTER DATABASE employee ON device_3=10
28 DB2 UDB V7.1 Porting Guide

3. Remove the default segment from the device_3 device so no other table
data can be placed there.

sp_dropsegment ‘default’, employee, device_3

4. Define a segment we will name seg_index on the device device_3.

sp_addsegment seg_index, employee, device_3

5. Create an index emp_index on the EMPL table.

CREATE UNIQUE NONCLUSTERED INDEX emp_index ON empl(employee_number) ON
seg_index

Note that you must execute the disk init command and ALTER DATABASE

command from the master database; therefore you need to execute the use

master command before step 1.

You need to execute the USE employee command before step 3, because the
sp_dropsegment, sp_addsegment stored procedure, and CREATE INDEX command
should be executed for the employee database.

Now our configuration looks like this:

• The master device of 50 MB contains:

- The master database 25 MB
- The tempdb database 2 MB
- The model database 2 MB
- Free space 21 MB

• The device_1 of 500 MB contains:

- The sybsystemprocs database 80 MB
- The employee database 320 MB
- Free space 100 MB

• The device_2 of 200 MB contains:

- The employee database 180 MB
- Free space 20 MB

• The device_3 of 10 MB is new and contains:

- The employee database 10 MB (for index)
- No free space
Chapter 4. Database structure and data types 29

Figure 6 shows this configuration.

Figure 6. Sybase Server with employee database segments

Sybase tables
When a table is created using the CREATE TABLE command, the table may be
mapped to a specific segment, or if no segment is specified, the table is
placed on the default segment.

If the table already exists and is using only the default segment, the
sp_placeobject stored procedure may be used to direct future allocations for
the table to a new segment.

Indexes may also be directed to specific segments. One of the more practical
uses of segments is to allow separation of data and nonclustered indexes.

4.1.1.4 Transaction logs
Sybase transaction logging is accomplished at the database level. When you
create a database, there will be a table syslogs which is used for transaction
logging and recovery for the database.

The syslogs table will be mapped to the logsegment segment mentioned
above.

master

master

tempdb

model

device_1

sybsystemprocs

employee

device_2

tempdb

device_3

default

system

logsegment

seg_index
30 DB2 UDB V7.1 Porting Guide

When you create a new database, you have an option to place the syslogs

table and the logsegment segment on a separate device. The table syslogs is
always created on an internal segment, logsegment. When you separate data
and logs, you have a greater chance of recovery if a device goes down. You
accomplish this by specifying the log on option of the CREATE DATABASE

command. Having a separate log device also allows you to more easily mirror
the log device to provide even better recovery.

If the logsegment fills, processing will be suspended until the situation is
cleared.

You can dump the transaction log to disk or tape devices using the Sybase
Backup server.

The transaction log can also be truncated using the with TRUNCATE_ONLY option
of the DUMP TRAN command. This option, however, will leave you in a position
of losing data if your server should go down and you have to restore from a
backup. There is some protection for this since it will not allow another
transaction dump to process until a complete database dump has
successfully completed.

4.1.2 DB2 database structure
The instance is the logical database server in the DB2 UDB environment. A
DB2 instance can manage multiple databases.

A DB2 database consists of table spaces to which tables are assigned. Table
spaces are created on containers. Figure 7 shows this relationship.

Figure 7. Table spaces and containers

Database

Container
4

PROJECT
Table

SCHED
Table Space

Container
0

Container
1

Container
2

Container
3

EMPLOYEE
Table

DEPARTMENT
Table

HUMANRES
Table Space
Chapter 4. Database structure and data types 31

4.1.2.1 DB2 table space
A table space can be described as the layer between the physical device, the
container, and the table which contains the data. Careful planning in the
process to create table spaces can have positive impact on the database.
When you create a DB2 UDB database, the following three table spaces are
created:

• SYSCATSPACE

• TEMPSPACE1

• USERSPACE1

The SYSCATSPACE table space contains the system catalogs.

The TEMPSPACE1 table space is used by the database manager for SQL
operations, holding transient data like intermediate tables during sorts,
reorganizing tables, creating indexes and joining tables.

The USERSPACE1 table space is used to store user tables. You may create your
own tables in the USERSPACE1 table space using your own names.

Once you have created a database, you may create your own table spaces to
store user tables. The USERSPACE1 table space may be dropped if you have
created your own table spaces.

If you want to use declared global temporary tables, you have to create a
user temporary table space after the database is created. Declared global
temporary tables will be discussed in “Declared temporary tables” on
page 142.

You can perform the DB2 UDB backup and recovery at the table space level,
therefore if we plan properly, we will place tables with similar backup and
recovery requirements on like table spaces, or place larger tables on a single
table space to allow recovery at the table level.

When planning your table spaces, there are two types of table spaces that
can be created; System Managed Space (SMS) and Database Managed
Space (DMS).

4.1.2.2 DB2 container
A container is a physical storage device, identified by a directory name, a
device name, or a file name. Containers are normally set up by your AIX or
UNIX system administrator and are raw devices or file systems. Once set up,
the CREATE TABLESPACE or ALTER TABLESPACE commands create or make them
usable to DB2 UDB.
32 DB2 UDB V7.1 Porting Guide

It is important to note that DB2 table space containers are written to in a
round-robin manner. The database manager writes an extent, which is a
contiguous allocation of space within a table space, on the first container in
the table space, then the second, third, and continues until it wraps back
around to the first.

4.1.2.3 SMS table spaces
In an SMS table space, the operating system’s file system manager allocates
and manages the space where your table is to be stored. The user decides
where the files are located while DB2 UDB controls the file names and the file
system manages and allocated space for them. For SMS table spaces, each
container would be a directory in the Operating System file system.

4.1.2.4 DMS table spaces
If you use DMS table spaces, the database manager will control the storage
space. The database administrator will decide which devices to use and DB2
UDB manages the space on those devices. The table space definition will
include a list of devices or files assigned to the table space. Each container
will be either a fixed size Operating System file or a raw device.

4.1.2.5 DB2 table space types
There are four types of table spaces:

• Regular table spaces

Tables containing user data are created on regular table spaces. When we
execute the CREATE DATABASE command, a table space named USERSPACE1 is
created. You may optionally create other table spaces using your own
names.

• Long table spaces

When a table has long field columns (LONG VARCHAR or LONG VARGRAPHIC) or
large object columns (CLOB, BLOB or DBCLOB), those columns data may be
placed on a long table space separately. Long table spaces must be DMS
table spaces.

• System temporary table spaces

The database manager must have at least one temporary table space
defined. The CREATE DATABASE command creates a temporary table space
named TEMPSPACE1. You can create your own temporary table space using
any valid name and then drop this table space if you like.
Chapter 4. Database structure and data types 33

• User temporary table spaces

You must create user temporary table spaces to use declared global
temporary tables. See 7.4, “Declared temporary tables” on page 142 for
more details.

Temporary table spaces can be either SMS or DMS.

4.1.2.6 DB2 data files
The DB2 physical structure of the data files is dependent on the type of table
space you define. As mentioned above, there are two types of table spaces
and both types can be utilized within a single database. They are:

• System managed space (SMS) table space

The operating system’s file manager allocates and controls the storage
space within the file system.

• Database managed space (DMS) table space

The database manager controls the storage space within a logical volume
or operating system file.

When you create an SMS table space, all data files are located under the
database subdirectories, or you may specify the directory path(s) where you
would like to store the data. The file names are selected by DB2 automatically
when created. The number of subdirectories to be created are specified at
table space creation time and cannot be changed later.

SMS table space
The database administrator can specify any operating system directory
accessible by the system for SMS containers. Each directory will be a
container and one table space can have multiple containers. With this in mind
the maximum size of a table in an SMS table space will be determined by the
number of containers specified, multiplied by the maximum file size
supported by the operating system.

There are architectural limits of the maximum table size in a table space
depending on the data page size you specify when creating the table
space. See Appendix A, “SQL Limits” in the SQL Reference, SC09-2975,
for more information.

Note
34 DB2 UDB V7.1 Porting Guide

Table 3 lists the files that can be found in the SMS table space directory.

Table 3. Files in an SMS table space container

DMS table space
For DMS table spaces, the database management system becomes
responsible for managing the space. DMS table spaces are built on
pre-allocated raw devices or files. When you create a DMS table space, you
need to specify its containers definition including the container type (device or
file), which devices or files to use, and the size of the each container.

The directories on which you intend to create DMS container files, or raw
devices need to have the owner and group set to match the DB2 instance
owner and group.

Table objects for the data, indexes, and LONG data columns can all be
stored in the same table space or in different table spaces. The size of the
DMS table spaces can be increased by adding more containers. For DMS
table spaces, a container can be either a file system file or a raw device.

File name Purpose

SQLxxxxx.DAT Table file where all rows of a table are stored except LONG
VARCHAR, LONG VARGRAPHIC, CLOB, BLOB and DBLOB
data.

SQLxxxxx.LF These files contain the data types LONG VARCHAR or LONG
VARGRAPHIC data. These tables are only created if
LONGVARCHAR or LONG VARGRAPHIC columns exist in the
table.

SQLxxxxx.LB These files are created only if CLOB, BLOB or DBLOB columns
appear in the table.

SQLxxxxx.LBA Files containing allocation and free space information about the
SQLxxxxx.LB files.

SQLxxxxx.INX These files contain index files for the tables. All indexes for a
corresponding table are stored in this file. It is only created if
indexes are defined. When indexes are dropped, the space is
not freed until all indexes for the table have been dropped.

SQLxxxxx.EIX Damaged SQLxxxxx.INX files would be stored here.

SQLxxxxx.DTR Temporary files for a REORG of an SQLxxxxx.DAT file.

SQLxxxxx.LFR Temporary file for a REORG of an SQLxxxxx.LF file.

SQLxxxxx.RLB Temporary file for a REORG of an SQLxxxxx.RL file.

SQLxxxxx.RBA Temporary file for a REORG of an SQLxxxxx.RB file.
Chapter 4. Database structure and data types 35

The DMS table space is implemented in a similar fashion to the Sybase
device. Table 4 compares the SMS, DMS and Sybase Device concept.

Table 4. Comparing SMS, DMS, and Sybase disks

4.1.2.7 DB2 tables
As with Sybase, DB2 UDB tables are created using the CREATE TABLE

command. Tables are created on table spaces and can use the USERSPACE1

table space, or another table space you have created. The regular table must
be created in a regular table space. Declared temporary tables must be
created in a user temporary table space.

For DMS table spaces, DB2 UDB allows you to create your table and indexes
on different table spaces. You may also direct long field data or large object
data to a long table space.

4.1.2.8 DB2 logging
DB2 UDB log files are created for each database. As transactions are
processed, they are written first to the log file and the database is updated at
a later time. DB2 UDB offers two types of logging, circular and archival. There
are also two types of log files, primary and secondary.

The type of logging you use will be determined by the type of recovery that is
best suited for your environment.

SMS table
space

DMS table
space

Sybase
device

Tablespaces can share containers
(or devices)

NO NO YES

Allocate space as needed YES NO NO

Increase number of containers in table
space

NO YES YES

Store index data in separate space NO YES YES

Store long data in separate space NO YES NO

One table (index, data, LOB) can span
several table spaces

NO YES YES (Index
and data
can be
stored
separately)

Container may be a raw device NO YES YES
36 DB2 UDB V7.1 Porting Guide

Circular logging is the default type of logging and supports non-recoverable
databases. Crash recovery and version recovery are available, but
roll-forward recovery is not available using this method.

Archival logging supports crash recovery, version recovery, and roll-forward
recovery. For archival logging, log files are archived when they become
inactive. You must specify LOGRETAIN ON to configure a database to perform
archival logging. Specifying USEREXIT ON will allow a user exit program to
move log files to archival directories, devices or Tivoli Storage Manager
(formerly ADSM) for retention.

Primary log files are pre allocated during the first connection to the database.
They establish a fixed amount of storage allocated to the recovery log files.
The database configuration parameter LOGPRIMARY determines the number of
primary files created, and LOGFILSIZ determines the size of each file.

Secondary log files are allocated one at a time, as needed, when the primary
log file becomes full. The number of secondary log files will depend on the
value specified in the configuration parameter, LOGSECOND, and the size of each
secondary log file is specified based on the LOGFILSIZ parameter.

4.1.2.9 DB2 UDB database directories
When a database is created, DB2 creates a separate subdirectory to store
control files (such as log header files) and to allocate containers to default
table spaces. Objects associated with the database are not always stored in
the database directory but can be stored in various locations, even devices.

The database is created in the file system path specified using the ON

parameter of the CREATE DATABASE command. The naming scheme used on
UNIX based systems is:

path/$DB2INSTANCE/NODEnnnn/SQL00001

Where:

• path is the user specified location to crate the database

• $DB2INSTANCE is the name of the instance you attached to. If you have not
explicitly attached to any instances using the ATTACH command, the value
specified in the DB2INSTANCE environment variable will be used.

• NODEnnnn is the node identifier in a partitioned database environment.The
first node will be NODE0000. Unless you are using DB2 UDB
Enterprise-Extended Edition, this is always NODE0000.

SQL00001 contains the objects associated with the first created, and
subsequent databases created will be SQL00002, 3, through n.
Chapter 4. Database structure and data types 37

4.1.2.10 Database files
The files shown in Table 5 will be associated with the creation of each
database.

Table 5. DB2 files

These files are critical to the operation to the database management system
and should not be changed or deleted.

FILE Description

SQLDBCON This file stores the tuning parameters and flags for the database.

SQLOGCTL.LFH This file is use to help track and control all of the database log
files.

Syyyyyy.LOG These are database log files, beginning with 000000 and going
through 99999.

The number of these files is determined by the LOGPRIMARY and
LOGSECOND database configuration parameters. The size of the
files is determined by the LOGFILSIZ parameter.

With circular logging, the files are reused with the same numbers.

For archive logging, the file number will increment as logs are
archived and new logs created. When the number reaches
999999, it will wrap around to 000000.

SQLINSLK This file helps insure that the database is used by only one
instance of the database manager.

SQLTMPLK This file also helps to insure that the database is used by only one
instance of the database manager.

SQLSPCS.1 This file contains the definition and current state of all table
spaces in the database.

SQLSPCS.2 This is a backup copy of sqlspcs.1 either this file or sqlpscs.1
must be available to access this database.

SQLBP.1 This file contains the definition of all buffer pools in the database.

SQLBP.2 This is a copy of SQLBP.1. This file or SQLBP.2 must be available
to access this database.

DB2HIST.ASC This is the database history file. It maintains a history of
administrative operations to the database, such as backups and
restores.

DB2HIST.BAK This is a back up copy of DB2HIST.ASC.
38 DB2 UDB V7.1 Porting Guide

4.1.3 DB2 logical storage
Although we discussed table spaces previously, it was directed more toward
physical use. Here, we will look at table spaces as the logical use for
containers.

Within Sybase Adaptive server, we have devices that are in many ways
similar to the DB2 table space. Once a device is set up in Sybase, using the
DISK INIT command, you must then associate the device with a database
using either the CREATE DATABASE command or ALTER DATABASE command. Once
these steps are accomplished, the device is ready to use as the DEFAULT

segments for that database. The Sybase server will now manage the space
for that device. In this usage, the Sybase device performs the functions of
both the container and the table space.

As we discussed earlier in the physical design sections, Sybase has another
mechanism to manage storage space, and that is the segment. A segment is
really a mechanism to direct tables or indexes to a specific device for
performance considerations. A segment can be assigned to only one device
when created, but can be extended to other devices using the
sp_extendsegment stored procedure. In this scenario, the Sybase segment will
be the same as the DB2 table space defined to a specific container. The
segment also applies to the entire device, not a part of a device in this
scenario.

Now the similarities end, since multiple segments can point to the same
device. Therefore, if we look at each in RDBMS terminology, the Sybase
device and the segment have a many-to-many relationship, where the DB2
container and table space have a many-to-one relationship.

Proper use of segment in the Sybase server can be very beneficial both in the
space utilization for devices as well as performance. A table and its index
may reside on different segments, and if a table has multiple indexes, the
table and each index can reside on a different segment.

In Sybase:

• Devices contain segments.
• Devices may contain more than one segment.
• Segments can span multiple devices.
• Segments must reside on at least one device.
• Tables are created on segments.
• Indexes can be on different segments.
• Each index can be on a different segment.
Chapter 4. Database structure and data types 39

The DB2 UDB table space is the logical relationship between a container and
the data. Within DB2, there is a rule of hierarchy, but not in Sybase. Table
spaces are created in databases, and a table space uses containers. Tables
and indexes are created in table spaces.

In DB2 UDB:

• Containers can belong to only one table space.

• Table spaces are created on containers.

• Table spaces can span multiple containers.

• Table spaces must have at least one container.

• Tables are created in table spaces.

• For DMS table spaces, a table, its indexes, and its LONG data can be
assigned different table spaces.

For DMS table spaces, additional containers can be added as needed. SMS
has a fixed number of containers at creation time and the number cannot be
increased.

4.1.4 Tables
In Sybase, when you create a table, you can specify that the table be created
on a specific segment. The following statement will create a table named empl

on the segment segment_1:

CREATE TABLE empl (employee_number CHAR(6),
employee_name VARCHAR(30))

ON segment_1

You can create indexes separately using the CREATE INDEX command and it
also has the option to create the index on a specific segment. If no segment
name is provided in either the CREATE TABLE or CREATE INDEX commands, they
will be created on the default segment.

For DB2 UDB the CREATE TABLE command is used to create the table:

CREATE TABLE empl (employee_number CHAR(6),
employee_name VARCHAR(30))

IN TABLESPACE tablespacea,
INDEX IN tablespaceb

This example will create the DB2 table empl in the table space tablespacea.
It will place the indexes on the table EMPL in the tablespace tablespaceb.
40 DB2 UDB V7.1 Porting Guide

4.2 Data type comparisons

The purpose of this section is to describe the data types supported by Sybase
and DB2 UDB. We list the data types by database management system, and
then identify the differences as well as the modifications necessary to port
from Sybase to DB2 UDB. Data types supported by DB2 only are not listed.

Table 6 lists the data types supported by the Sybase database management
system. Since our focus is on conversion, we will list and discuss only those
data types supported by Sybase.

Table 6. Sybase data types supported

Data Type Description Range Bytes of
storage

tinyint whole numbers 0-255 (no negative allowed) 1

smallint whole numbers 215 -1 (32767) to -215

(-32768)
2

int whole numbers 231 (2,147483647) to
-231(2,147483648)

4

numeric(p, s) numeric with
decimal numeric
with scale of 0
displayed without
decimal point

1038 -1 to -1038 2 to 17

decimal(p, s) numeric with
decimal

1038 -1 to -1038 2 to 17

float(precision) machine dependent 4 or 8 1

double precision machine dependent 8

real machine dependent 4

smallmoney monetary values 214,748.3647 to
-214,748.3548

4

money monetary values 922,337,203,685,477.5807
to
-922,337,303,685,477.580
8

8

smalldatetime date January 1, 1900 to
June 6, 2079 2

4

datetime date January 1, 1753 to
December 31, 9999 3

8

Chapter 4. Database structure and data types 41

1Float storage is 4 bytes if precision <16 or 8 bytes if precision is >=16.

2Smalldatetime values are accurate to the minute. Storage size is 4 bytes: 2
bytes for the number of days since January 1, 1900, and 2 bytes for the
number of minutes since midnight.

4.2.1 Character data types
This section discusses the character data types supported by Sybase and
DB2 and a comparison of functionality. First we show those data types
supported by Sybase with a corresponding DB2 data type. Table 7 lists the
corresponding data types and shows differences in content or functionality.

char(n) fixed length data in
single byte
character sets

1 to 255 n

varchar(n) variable character 1 to 255 actual
entry
length

nchar(n) national character 1 to 255 actual
entry
length

nvarchar(n) national variable
character

1 to 255 actual
character
length

text(n) varaible length
printable character
data

231 -1 (2,147,483,647) 0 or
multiples
of 2K

binary(n) variable length
binary data

255 bytes or less n

varbinary(n) 255 bytes or less actual
entry
length

image 231 -1 (2,147,483,647) 0 or
multiple of
2K

bit used for true/false
conditions

0 or 1 1

Data Type Description Range Bytes of
storage
42 DB2 UDB V7.1 Porting Guide

If a data type is not listed for DB2, we then list a suggested data type to use.
Some of these differences are minor, and the data type to use will depend on
your data content.

Table 7. Character data types

1This data type allows national character set specifications, where 1
character uses > 1 byte.

2 For the text data type for Sybase, the data is stored in increments of a data
page (2K bytes), whereas CLOB stores up to the maximum number of
characters specified by (n). Sybase also allows you to search for data in text
columns using the LIKE ‘%DATA’ option in the where clause. You will need to
check your applications for this.

3 Special restrictions apply to an expression resulting in a varying-length
string data type whose maximum length is greater than 254 bytes. Such
expressions are not permitted in a SELECT DISTINCT statement's SELECT list, a
GROUP BY clause, an ORDER BY clause, a column function with DISTINCT, and a
sub-select of a set operator other than UNION ALL.

These are the data types that fit best; however, the contents of your data may
require a different type substitution.

Sybase
Data Type

Bytes
of
storage

Comments USE DB2
Data Type

Bytes
of
storage

Comments

char(n) n 1 to 255
characters

char(n) b 1 to 254
characters

varchar(n) entry
length

1 to 255
characters

varchar(n) 3 entry
length

1 to 32,762
characters

nchar(n) 1 n * char
size

1 to 255
characters

graphic(n) 3 2 * n 1 to 127
characters

nvarchar(n)1 entry
length “
char size

1 to 255
characters

vargraphic(n) 3 2 * entry
length

1 to 2,000
characters

text 2 0 or
multiple
of 2K

1 to
2,147,483,6
47

CLOB(n) 1 to
2,147,483,6
47
Chapter 4. Database structure and data types 43

4.2.2 Numeric data type
Table 8 compares the Sybase numeric data types and the DB2 data types.
The primary differences here are that the tinyint data type is not supported
by DB2, so you will use the smallint data type. The tinyint data type does
not allow negative values, so this will be data dependent. Also, there are
differences in the float and real data types.

Table 8. Numeric data types

Sybase
data type

Bytes of
storage

Comments Use DB2
data type

Bytes of
storage

Comments

tinyint 1 value of 0 to
255 no
negatives

smallint 2 -32768 to
32767

smallint 2 -32768 to
32767

smallint 2 -32768 to
32767

int 4 -231 to 231 -1 int 4 -231 to 231 -1

bigint 8 -92233720368
54775808 to
+9223372036
854775807

numeric(p,
s)

2 to 17 -1038 to 1038

-1
numeric(p,
s)

(p/2)-1 -1038 to 1038

-1

decimal(p, s) 2 to 17 -1038 to 1038

-1
decimal(p,
s)

(p/2)-1 -1038 to 1038

-1

real 4 machine
dependent

real 4 zero or can
range from
-3.402E+38 to
-1.175E-37, or
from
1.175E-37 to
3.402E+38.

float(p) 4 or 81 machine
dependent

float or
double

8 zero or can
range from
-1.79769E+30
8 to
-2.225E-307,
or from
2.225E-307 to
1.79769E+308
.

44 DB2 UDB V7.1 Porting Guide

1In Sybase, float storage is 4 bytes if precision <16 or 8 bytes if precision is
>=16

4.2.3 Datetime data type
There are some differences between Sybase and DB2 in the date and time
data types. Table 9 shows the differences. The primary differences are that
DB2 does not support the smalldatetime data type, so you need to use the
timestamp type. The differences in the datetime and timestamp are the format
and the range of dates.

Table 9. Datetime data types

In Sybase, smalldatetime values are accurate to the minute. Storage size is 4
bytes: 2 bytes for the number of days since January 1, 1900; and 2 bytes for
the number of minutes since midnight.

double
precision

8 machine
dependent

float or
double

8 zero or can
range from
-1.79769E+30
8 to
-2.225E-307,
or from
2.225E-307 to
1.79769E+308
.

Sybase data
type

Bytes Comments Use DB2
data type

Bytes Comments

smalldatetime 8 January 1, 1900
to June 6, 2079

timestamp 10 January 1, 0000
to December 31,
9999

datetime 8 January 1, 1753
to December 31,
9999

timestamp 10 January 1, 0000
to December 31,
9999

date 4 January 1, 0000
to December 31,
9999

time 3 00:00:00 to
24:59:59

Sybase
data type

Bytes of
storage

Comments Use DB2
data type

Bytes of
storage

Comments
Chapter 4. Database structure and data types 45

In Sybase, datetime values are accurate to 1/300 of a second on platforms
that support this level of granularity. Storage size is 8 bytes: 4 bytes for the
number of days since the base date of January 1, 1900, and 4 bytes for the
time of day.

In DB2 UDB, timestamp values are accurate to the microsecond. Storage
size is 10 bytes.

There are also a number of date routines provided with Sybase, as well as
DB2, and they will be discussed in detail in Chapter 7, “Application
conversion” on page 115. DB2 provides the functionality for most of these
routines but be careful of format differences.

Sybase has multiple formats by which the date can be returned in a select
statement, using the CONVERT function, or SELECT GETDATE(N) to use the date
functions.

The default format for Sybase datetime and smalldatetime is as following:

• Jan 1 2000 12:00AM

This is midnight, January 1, 2000.

The default format for DB2 are:

• TIMESTAMP is YYYY-MM-DD-HH-MM-SS-NNNNNN.

• DATE is MM-DD-YYYY

• TIME is HH-MM-SS

You can change the display format using the CHAR function. See 7.3.1.2,
“Functions that have different names” on page 129.

4.2.4 Binary data type
Table 10 lists the binary data types supported by Sybase and the possible
DB2 data types. Since bit data type values are 0 or 1, use the CHAR(1) FOR BIT

DATA. Here, FOR BIT DATA specifies that the contents of the column are to be
treated as bit (binary) data.
46 DB2 UDB V7.1 Porting Guide

Table 10. Binary data types

There are some differences in the way the binary(n) data type and the char
for bit data types are handled. Sybase will accept either character data or
numeric data for the binary(n) data type. See the following examples:

Sybase
data
type

Bytes of
storage

Comments Use DB2
data type

Bytes of
storage

Comments

binary n 0 to 255 bytes character(n)
for bit data

n 1 to 254
characters

varbinary entry
length

0 to 255 bytes varchar(n)
for bit data

entry
length

1 to 254
characters

image 231 bytes or
less stored in
multiples of a
page

BLOB(n) entry
length

1 to 231

bytes. Actual
data length
will be stored

bit 1 0 or 1 char(1) for
bit data

1 1 byte

1> create table test05 (col1 binary(10))
2> go
(1 row affected)
1> insert test05 values(1024)
2> go
(1 row affected)
1> insert test05 values(‘1024’)
2> go
(1 row affected)
1> insert test05 values(0x1024)
2> go
(1 row affected)
1> select * from test05
2> go
col1

0x00000400000000000000
0x31303234000000000000
0x10240000000000000000

(3 rows affected)
Chapter 4. Database structure and data types 47

Here we created a table with a binary data type with a length of 10, inserted a
numeric value of 1024 into the table, inserted a character value of ‘1024’, and
then inserted a binary value of 0x1024. Notice that the numeric value is
converted and the character is not. Also, the padding for both types is binary
zero(0), and the select presents the data as 0x, then the data values.

In DB2, you cannot insert numeric values into a char for bit data type column.
See the following examples:

DB2 treats both inserts in the same manner as Sybase, but instead of
padding with zero, it pads with spaces.

Notice also that the output of the select statement is prefixed with an x and
enclosed in single quotes. When the inserted values contain the full length of
10 characters, then the data selected is the same except for the 0x for
Sybase and x’ for DB2 UDB.

4.2.5 Other data types
Table 11 lists other data types supported by Sybase. The MONEY and
SMALLMONEY data types are not supported by DB2, so we will use
NUMERIC(p, s). These can specify 2 or 4 decimal positions, depending on
your needs.

$ db2 “create table table05 (col1 char(10) for bit data)”
DB20000I The SQL command completed successfully.
$ db2 “insert into table05 values (‘1024’)”
DB20000I The SQL command completed successfully.
$ db2 “insert into table05 values (x‘1024’)”
DB20000I The SQL command completed successfully.
$ db2 “select * from table05”

COL1

x'31303234202020202020'
x'10242020202020202020'

2 record(s) selected.
48 DB2 UDB V7.1 Porting Guide

Table 11. Other data types

4.2.5.1 Identity columns
In this section we will discuss the Sybase identity and the DB2 identity data
types and will explain their differences.

Sybase identity columns
Sybase allows a user to specify a data type of IDENTITY for a column which
will generate a unique sequential number for each row in the table. IDENTITY
columns have a data type of NUMERIC with scale of 0. The format for creating
an IDENTITY column is:

CREATE TABLE sample_table (id_col NUMERIC(6, 0) IDENTITY)

The system will generate a sequential number for each insert into the table.
The IDENTITY cannot be updated by the user application and cannot contain
nulls. It may, however be referenced by using the @@SYB_IDENTITY global
variable.

You can get the information about IDENTITY columns by executing the
following command:

SELECT @@IDENTITY

DB2 identity columns
DB2 supports the IDENTITY data type in a very similar manner. DB2 will
generate an IDENTITY column which will be incremental for each insert and will
not allow nulls. There are some additional options which allow a starting
number at creation time, as well as an option to determine the value to
increment.

Sybase data
type

Bytes of
storage

Comments Use DB2 data
type

Bytes of
storage

Comments

smallmoney 4 -214,748.3548 to
214,748.3647

numeric(10, 4) 6 -999,999.999 to
999,999.9999

money 8 -922,337,203,685,
477.5808 to
922,337,203,685,
477.5808

numeric(19, 4) 10 -999,999,999,999,
999.9999 to
999,999,999,999,
999.9999

identity see paragraph
below

identity

user data types see paragraph
below

user defined
types
Chapter 4. Database structure and data types 49

For example, INCREMENT BY 2 would cause this column to be incremented by
two for each row inserted. The INCREMENT BY value may be negative, to cause
the value to decremented if you wish to start with a high number and
decrement for each insert. Formats for the CREATE TABLE commands are very
similar:

CREATE TABLE sample_table (id_col NUMERIC(6, 0) GENERATED ALWAYS AS
IDENTITY)

Or:

CREATE TABLE sample_table (id_col NUMERIC(6, 0) GENERATED ALWAYS AS
IDENTITY (START WITH 900000,INCREMENT BY -1))

The GENERATED ALWAYS option indicates that DB2 will always generate a value
for the IDENTITY column when a row is inserted into the table, and this is the
same behavior as Sybase’s IDENTITY column.

To obtain the last IDENTITY column value, DB2 has the IDENTITY_VAL_LOCAL()

function. We will discuss the IDENTITY_VAL_LOCAL() function in “The
@@identity global variable” on page 151.

When you are converting a Sybase table with an IDENTITY column to DB2
table, and you wish to retain the IDENTITY column value from the source
Sybase table, specify the last identity value plus 1 with the START WITH option
of the CREATE TABLE statement. Otherwise, after loading the data into the target
DB2 table, a future insert may generate a duplicate identity value. This is
because the MODIFIED BY IDENTITYOVERRIDE option of the DB2 LOAD utility,
which you need to specify to make the DB2 LOAD utility get the identity
values from the input file instead of generating them, does not keep track of
the values. Therefore, the first insert after the loading will generate the
identity value which is specified with the START WITH option of the CREATE TABLE

statement.

4.2.5.2 User defined data types
Both Sybase and DB2 allow user defined data types based on existing data
types.

Sybase user defined data types
For Sybase, user defined data types are added to the database by the stored
procedure sp_addtype as in the following example:

sp_addtype mytype, DECIMAL(8,2)

You may use the stored procedure sp_help to get information about an
existing user defined data type.
50 DB2 UDB V7.1 Porting Guide

When adding a user defined data type, you must be in the database where
you want the new user defined data type to exist. You can, however add user
defined data types to the MODEL database and any new databases created will
contain your new user defined data types.

You can bind RULES with the user defined data type definitions using the
sp_bindrule stored procedure. When you use the user defined data type in
table column definitions, these columns inherit the rules, properties and
defaults associated with that user defined type.

DB2 user defined data types
DB2 also supports user defined data types. Creation of user defined distinct
type with DB2 is accomplished using the following CREATE statement:

CREATE DISTINCT TYPE mytype AS DECIMAL(8,2) WITH COMPARISONS

Note that you cannot compare a user defined data type data with its base
data type data directly. This concept is known as strong data typing.
DB2 provides strong data typing to avoid end-user mistakes during the
assignment or comparison of different types of real-world data. For example,
the following select statement will give an error condition because the column
salary is defined as data type mytype.:

CREATE table mytable (id INT, salary MYTYPE)
SELECT * FROM mytable WHERE salary > 35000

To compare the salary column with the constant value 3500, you should
modify the select statement as following:

SELECT * FROM mytable WHERE salary > CAST (35000 AS mytype)

Or:

SELECT * FROM mytable WHERE salary > mytype(35000)

Or:

SELECT * FROM mytable WHERE DECIMAL(salary) > 35000

In Sybase, user defined data types do not support strong data typing, and you
can compare a user defined data type data with its base data type data
directly. Therefore, when you convert your applications, look at SQL
statements carefully and use casting functions to handle user defined data
types if necessary.
Chapter 4. Database structure and data types 51

4.2.5.3 Host variable declarations
When dealing with data types, we not only have to look at the SQL data types
for Sybase and DB2, but also with the programming language data types.
When converting we need to insure that the new data types are compatible
with the DB2 precompiler. Table 12 shows a comparison between Sybase,
DB2 UDB, and the C or C++ languages.

Table 12. SQL and C/C++ data type comparison

Sybase data type Db2 data type C data type declaration

char(n) CHAR(n) char char_var[n+1];

varchar(n) VARCHAR(n) struct{short len; char data[n]}
varchar_var;

text CLOB(n) SQL TYPE IS CLOB(n) v-name;

numeric(p, s) NUMERIC(p, s) Double num_var;

decimal DECIMAL Double dec_var;

money, smallmoney DECIMAL(p, s) Double dec_car;

integer INTEGER Long int int_var;

smallint SMALLINT Short int_var;

bit CHAR(n) for bit
data type

Char;

image BLOB(n) SQL TYPE is BLOB(n) v_name;

datetime TIMESTAMP Char tms_var[27];

datetime(date only) DATE(YYYY-MM-D
D)

Char dt_var[11];

datetime(time only) TIME (HH:MM:SS) Char tm_var[11];
52 DB2 UDB V7.1 Porting Guide

Chapter 5. Database conversion

In this chapter we cover the creation of databases on the DB2 UDB system,
including conversion methods, creation of DB2 UDB instances, databases,
table spaces, tables, data types, tables, views, and indexes. We also look at
security in the Sybase database and corresponding DB2 UDB security
implementation.

Actual data conversion and population of the tables will be covered in Chapter
6, “Data conversion” on page 91.

5.1 Conversion method

Our first task in the conversion process is to decide how the conversion
process should be accomplished. We will look at manual conversion with no
tools as well as conversion using conversion tools.

We must first plan for the conversion by taking inventory of the existing
database on the Sybase server. Here are some of the things we need to
consider:

• Size of the database

• Number of tables

• How our data is accessed

• If the current database uses segments

• Indexes

• Data types, with special attention to user defined data types

• Security on tables and other objects

To get started, we will use the Sybase sp_helpdb stored procedure to show us
information about the database to be converted. The sp_helpdb stored
procedure with no parameters shows information about all databases. If you
provide a parameter with the database name, you will see information only
about the database we are going to convert, which is named test1. Several
command and output examples are shown in the following sections.
© Copyright IBM Corp. 2000 53

As shown in Figure 8, the stored procedure sp_helpdb with no parameters will
display information about all databases in the system.

Figure 8. sp_helpdb output

1> sp_helpdb
2> go
name db_size owner dbid

created
status

------------------------ ------------- ------------------------ ------

--

master 6.0 MB sa 1

Jan 01, 1900
no options set

model 2.0 MB sa 3
Jan 01, 1900
no options set

pubs2 3.0 MB sa 4
Aug 02, 2000
trunc log on chkpt

sybsystemdb 2.0 MB sa 31513
Nov 03, 1999
no options set

sybsystemprocs 80.0 MB sa 31514
Aug 02, 2000
trunc log on chkpt

tempdb 2.0 MB sa 2
Aug 03, 2000
select into/bulkcopy/pllsort

test1 15.0 MB sa 5
Aug 03, 2000
trunc log on chkpt

1 row affected)
(return status = 0)
1>
54 DB2 UDB V7.1 Porting Guide

The next screen, Figure 9, shows information on the database we want to
convert, test1.

Figure 9. sp_helpdb output using database name option

Here we see that our database name is test1. It is 15 MB in size, it is all on
one device named device_1, and the log segment and data share the same
device. We will use this information when planning to create our DB2 table
spaces.

1> sp_helpdb test1
2> go
name db_size owner dbid

created
status

------------------------ ------------- ------------------------ ------

--

test1 15.0 MB sa 5

Aug 03, 2000
trunc log on chkpt

(1 row affected)
device_fragments size usage

free kbytes
------------------------------ ------------- --------------------

device_1 15.0 MB data and log

7614
device

segment

--

device_1

default

device_1
logsegment

device_1
system

(return status = 0)
1>
Chapter 5. Database conversion 55

Next we will look at the segments defined within database test1 using the
stored procedure sp_helpsegment. See the output example shown in Figure 10.

Figure 10. sp_helpsegment output

The output from the sp_helpsegment stored procedure tells us there are no
user segments defined for this database.

To look at the tables, stored procedures and other objects we will use the
sp_help stored procedure.

To view table information, use stored procedure sp_help table_name. See the
output example shown in Figure 11.

1> use test1
2> go
1> sp_helpsegment
2> go
segment name status
------- ------------------------------ ------

0 system 0
1 default 1
2 logsegment 0

(return status = 0)
56 DB2 UDB V7.1 Porting Guide

Figure 11. Screen of sp_help table01

1> sp_help table01
2> go
Name Owner

Type
------------------------------ ------------------------------

table01 dbo

user table

(1 row affected)
Data_located_on_segment When_created
------------------------------ --------------------------
default Sep 19 2000 1:07PM
Column_name Type Length Prec Scale Nulls Default_name

Rule_name Identity
--------------- --------------- ------ ---- ----- ----- ---------------

--------------- --------
col1 varchar 40 NULL NULL 0 NULL

NULL 0
col2 varchar 10 NULL NULL 0 NULL

NULL 0
col3 float 4 NULL NULL 0 NULL

NULL 0
index_name index_description

index_keys
index_max_rows_per_page index_fillfactor index_reservepagegap
-------------------- --

--
--
--

----------------------- ---------------- --------------------
index01 clustered, unique located on default

col1, col2

0 0 0

(1 row affected)
No defined keys for this object.
Object is not partitioned.
Lock scheme Allpages
The attribute 'exp_row_size' is not applicable to tables with allpages lock
scheme.
The attribute 'concurrency_opt_threshold' is not applicable to tables with
allpages lock scheme.

exp_row_size reservepagegap fillfactor max_rows_per_page identity_gap
------------ -------------- ---------- ----------------- ------------

0 0 0 0 0

(1 row affected)
concurrency_opt_threshold

0
(return status = 0)
Chapter 5. Database conversion 57

This output gives us the following information:

• Table name

• Column name

• Data type, length, precision if applies

• Which segment it resides on, if any

• If the column allows nulls

• If any rules apply to this column

• If this is an IDENTITY column

• Primary key for the table

• Indexes associated with this table

• Type of index for indexes

• Segment for indexes

Below are several other stored procedures we will find useful during this
conversion:

• sp_helpcache will give information about buffer cache allocation

• sp_configure will display configuration parameters when no parameters
supplied

• sp_helpconstraint shows any constraints for objects

• sp_helpdb gives information about databases

• sp_helpdevice list device information

• sp_helpgroup shows the login/security groups set up in the database

• sp_helpindex lists index information

• sp_helpkey displays information about keys and tables

• sp_helplanguage shows language configures for this database

• sp_helplog displays information about the database logs

• sp_helpobjectdef displays object owner and type

• sp_helprotect is used to display permissions for an object

• sp_helpsegment lists the segments defined to a database

• sp_helpsort displays sort configuration

• sp_helptext will display the source for stored procedures

• sp_helpuser will list names assigned group for database users
58 DB2 UDB V7.1 Porting Guide

5.1.1 Manual conversion
Now that we have a method to collect the necessary information, we will look
at the resources available to do a manual conversion. The two manual
methods we will address are these:

• Using Sybase SQL commands from the ISQL utility and the DEFNCOPY
utility

• Generating DDLs using the Sybase Central product.

Both methods will require manually creating the DB2 UDB database, table
spaces and all database objects, as well as editing all objects to conform to
the DB2 UDB environment.

5.1.1.1 Command line method
To determine the type of objects in our Sybase database, we can execute a
select statement as shown in Figure 12 to determine what type of objects we
must convert.

Figure 12. Sybase objects by type

Based on our output on the screen above, we can interpret as follows:

• P — We have 115 stored procedures.

• S — There are 26 system tables which we will not need to consider.

• TR — We have 16 triggers.

• U — There are 35 user tables.

• V — We have 30 views.

1> use test1
2> go
1> select type, count(type) from sysobjects group by type order by type
2> go
type
---- -----------
P 115
S 26
TR 16
U 35
V 30

(5 rows affected)
1>
Chapter 5. Database conversion 59

There are 35 user tables in the database and we will focus on those first. We
first need to get this metadata into operating system files, so we can edit the
CREATE TABLE DDL and change to the DB2 UDB format. One way to do this is
to manually copy this data from an output screen from the sp_help stored
procedure. This would be slow and tedious, so it is the least desirable option.

We can also use the DEFNCOPY utility to generate DDLs for views, rules,
defaults, triggers, or stored procedures from a database, and edit them to be
executed for DB2. Note that the DEFNCOPY utility cannot be used for tables.

We can execute the DEFNCOPY utility for each database object one-by-one,
or we can compose a select command to create a script executing the
DEFNCOPY utility.

Figure 13 shows the select statement that we used to generate defncopy

statements for the views.

Figure 13. SQL to create output file with view names for DEFNCOPY

We can run the SQL above and create the actual output file with the defncopy

statements. The generated script file would appear as shown in Figure 14.

Figure 14. Output file defncopy.views

use test1
go
select 'defncopy -Usa -Sununbium -P out '+name+'.ddl dtp1 dbo.'+name

from sysobjects
where type = 'V'
order by name

go

defncopy -Usa -Sununbium -P out view01.ddl test1 dbo.view01
defncopy -Usa -Sununbium -P out view02.ddl test1 dbo.view02
defncopy -Usa -Sununbium -P out view03.ddl test1 dbo.view03
defncopy -Usa -Sununbium -P out view04.ddl test1 dbo.view04
defncopy -Usa -Sununbium -P out view05.ddl test1 dbo.view05
defncopy -Usa -Sununbium -P out view06.ddl test1 dbo.view06
defncopy -Usa -Sununbium -P out view07.ddl test1 dbo.view07
defncopy -Usa -Sununbium -P out view08.ddl test1 dbo.view08
defncopy -Usa -Sununbium -P out view09.ddl test1 dbo.view09
defncopy -Usa -Sununbium -P out view10.ddl test1 dbo.view10
defncopy -Usa -Sununbium -P out view11.ddl test1 dbo.view11
defncopy -Usa -Sununbium -P out view12.ddl test1 dbo.view12
defncopy -Usa -Sununbium -P out view13.ddl test1 dbo.view13
defncopy -Usa -Sununbium -P out view14.ddl test1 dbo.view14
60 DB2 UDB V7.1 Porting Guide

After the job is run, we looked at the file created using a text editor such as
the vi editor and then changed the file to add execute permissions using the
chmod +x command so we could execute the file.

Once the DDL commands have been created, we must go through each file
and look for incompatibilities and change to conform to DB2 requirements.

The processes above will need to be repeated for the stored procedures,
defaults, triggers, and rules.

Since the DEFNCOPY utility does not generate DDL for tables, you will have
to address tables either manually from the output of the sp_help, or generate
DDLs using Sybase Central GUI.

It would make the process simpler if the security policy — who will have
access to what — were to be defined before creating DDLs for the target DB2
database is complete, so we could place GRANT commands in our files with the
proper objects.

When the DDL for each object is ready to be executed for the DB2 database,
we can use the files as input to the DB2 command line processor (CLP) as
follows:

db2 connect to db2_db
db2 -tvf filename.ddl -r output.txt -s -l errorlog.txt

Where:

• db2_db is the target db2 database.

• filename.ddl is your edited DDL file.

• output.txt is a file for output.

• errorlog.txt is a file for any errors generated.

5.1.1.2 Sybase Central
Sybase Central is the Sybase GUI interface product used to manage the
server, and to create and maintain tables and other objects. It can also be
used to collect the information above and create files containing the DDL.
This can be done from Sybase Central as follows:

1. Click the Databases folder.

2. Click the database you want to convert.

3. Click the User Tables folder.

4. Right-click the table you want to generate the DDL.
Chapter 5. Database conversion 61

5. Select Generate DDL, as shown in Figure 15. A separate window will
pop up with the source for that table.

You can then save this to a file, and edit it with an editor such as the vi editor.

The DDL generated in this method will contain everything related to the table,
such as permissions, constraints, and indexes.

Figure 15. Sybase Central screen display

5.1.2 Using a conversion tool
Another option for the porting is the use of conversion tools. We have
selected ManTech SQL Conversion Workbench for this project. The focus is
not on the product itself, but that it is an option. More details are provided in
A.1, “SQL Conversion Workbench” on page 229.

We will skip the installation process and go straight into the conversion
process, using ManTech SQL Conversion Workbench. This process consists
of four major steps:

• Unload metadata

• Load repository

• Build DDL

• Convert stored procedures
62 DB2 UDB V7.1 Porting Guide

5.1.2.1 Unload metadata
To start the unload process, make sure you have already finished the First
Steps process from the SQL Conversion Workbench icon. Then we will select
the SQL Server Unload Option to begin this step.

The tool will unload the metadata of database objects, display a list of errors
and warnings, and then wait for you to do the Load Repository function.
When the unload completes, you will get a summary screen with statistics.

We are now ready to load the repository.

5.1.2.2 Load repository
This step simply loads the metadata created from the unload step into the
repository database. It also creates a screen of errors and warnings.

5.1.2.3 Build DDL
After the repository is loaded with the metadata, you will have the opportunity
to edit any members, and when satisfied, you can the generate the DDL for
DB2 UDB.

The build DDL feature creates statements in DB2 UDB format to:

• CREATE DATABASE
• CREATE TABLESPACE
• CREATE TABLE
• CREATE VIEW
• CREATE TYPE

These DDL statements will need to be reviewed carefully to ensure that the
file paths for the containers are where you want to place the tablespaces, to
verify whether you want to use SMS or DMS storage and also for the
placement of tables in table spaces. You may also want to create additional
table spaces to place indexes or place certain tables in a table space by
themselves.

When you are satisfied with the DDLs, you can use the output file as input
into the DB2 command line processor (CLP) to build the objects in the DB2
database as follows:

db2 connect to db2_db
db2 -tvf filename.ddl -r output.txt -s -l errorlog.txt

Where:
Chapter 5. Database conversion 63

• db2_db is the target db2 database.

• filename.ddl is your edited DDL file.

• output.txt is a file for output.

• errorlog.txt is a file for any errors generated.

When this step is completed, you can begin to convert the stored procedures.

5.1.2.4 Convert stored procedures
This tool will convert the Sybase stored procedures to the DB2 UDB
requirements but that will be discussed in detail in a later chapter.

Depending on which conversion tool you have chosen, the steps to convert
your Sybase database into DB2 database will be different from the ones we
show in this section; however, we found that using the conversion tool had
been the great contributing factor to reduce our workload on the project. We
strongly recommend using such a conversion tool that assists you in the
migration projects from Sybase to DB2 UDB. Please check the following Web
site for the latest information on the migration tool from Sybase to DB2 UDB:

http://www-4.ibm.com/software/data/db2/migration/

5.2 Create DB2 instance

The first thing you will need to do is create your DB2 UDB instance.

Before creating an instance, you will need to create two UNIX groups and
users for which you will need UNIX root authority, or have your Systems
Administrator perform this function. These users will be the instance owner
and the user under which fenced user defined functions and fenced stored
procedures. These run in the different process from the database manager
operating environment’s process. Fenced user defined functions and stored
procedures are documented in detail in the Application Development Guide,
SC09-2949.

The creation of the DB2 instance is accomplished using the db2icrt

command, or using the db2setup script on the install CD-ROM.

The following command creates a new instance db2inst1. You should execute
this command after logging in as the root user:

/usr/lpp/db2_07_01/instance/db2icrt -u db2fenc1 db2inst1

Where db2fenc1 is the user that runs fenced user defined functions and stored
procedures, and db2inst1 is the instance name.
64 DB2 UDB V7.1 Porting Guide

The created instances can be listed by the root user using the following
command:

/usr/lpp/db2_07_01/instance/db2ilist

Once you have created the new instance successfully, login to the server
machine as the instance owner user ID, and then start the instance using the
db2start command.

5.3 Create DB2 database

Now we can look at creation of our database. To create the database you will
need to know the sort sequence you are currently using in the Sybase server.

5.3.1 Obtain sort sequence information from Sybase
With Sybase, your sort sequence is specified at the server configuration level
whereas in DB2 it is at the database level. As shown in Figure 16, you can get
the sort order for Sybase server using the sp_helpsort stored procedure.

Figure 16. sp_helpsort output

1> sp_helpsort
2> go

Collation Name Collation ID
------------------------------ ------------

Loadable Sort Table Name

Sort Order Description

--
Character Set = 1, iso_1

ISO 8859-1 (Latin-1) - Western European 8-bit character set.
Sort Order = 50, bin_iso_1

Binary sort order for the ISO 8859/1 character set (iso_1).
Characters, in Order

--
! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _
` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~
¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ - ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À
Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß à
á â ã ä å æ ç è é ê ë ì í î ï ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

(return status = 0)
Chapter 5. Database conversion 65

In the middle of this screen, we see that Sort Order = 50, bin_iso_1. This and
the next statement tell us that we are using the binary sort option.

For DB2 the sort order is specified in the CREATE DATABASE command by way of
the COLLATE USING SYSTEM, or COLLATE USING IDENTITY parameters.

Specifying SYSTEMwill cause DB2 system to pick up a code page based on the
TERRITORY value in the CREATE DATABASE command. The option COLLATE USING

IDENTITY will do a binary sort.

Since our Sybase server was configured to use the binary sort, we need to
specify COLLATE USING IDENTITY when we create our database. The only time
you would need to use anything other than IDENTITY is if you have some
non-standard sorting specified for Sybase.

5.3.2 Create database command for DB2
The CREATE DATABASE command we created follows:

CREATE DATABASE test1 ON /db2udb COLLATE USING IDENTITY
CATALOG TABLESPACE

MANAGED BY SYSTEM USING (‘SYSCATSPACE”)
EXTENTSIZE 16 PREFETCHSIZE 16

USER TABLESPACE
MANAGED BY SYSTEM USING (‘USERSPACE1’)
EXTENTSIZE 16 PREFETCHSIZE 32

TEMPORARY TABLESPACE
MANAGED BY SYSTEM USING (‘TEMPSPACE1’)
EXTENTSIZE 16 PREFETCHSIZE 32;

The DDL above will create a database named test1, and we have specified
the COLLATE USING IDENTITY which will give us a sorting sequence based on
binary content of the columns. The option IDENTITY was chosen because our
Sybase server’s sort option was binary. No special code set is specified in the
CREATE DATABASE command, and the locale of the current operating
environment will determine the code set. In our case, the code page 819
(en_US) will be used.

We also told DB2 that we want to create the catalog table space SYSCATSPACE,
user table space USERSPACE1, and temporary tablespace TEMPSPACE1 as system
managed space (SMS) table spaces, so we specified MANAGED BY SYSTEM.

Later, we will create user temporary table spaces, as well as table spaces
into which we can place our table data.
66 DB2 UDB V7.1 Porting Guide

The database is now created, and we are ready to set up the transaction log
path and create some table spaces for our data.

5.3.3 Set up transaction log path
When a database is created, the log files will be created in the directory
specified in the ON option of the CREATE DATABASE command. You will probably
want to change this to separate the log files from the table spaces, both for
performance and recovery reasons. This can be done by updating the
configuration file as in the following example:

UPDATE DB CFG FOR test1 USING NEWLOGPATH ‘/path’

The new log file path for the test1 database will become effective the next
time the database is stopped and restarted.

You can also change the number of log files and size of the log files in this
manner by changing the LOGPRIMARY, LOGSECOND or LOGFILSIZ values.

5.4 Create table spaces

Table spaces are the logical layer between the database and the table data
stored in the database. As we discussed previously, there are two type of
table spaces, System Managed Space (SMS) table spaces and Database
Managed Space (DMS) table spaces. You will need to determine which types
of table spaces to create. There can be both SMS and DMS table spaces
within a database.

5.4.1 Designing table spaces
You will want to take some time and look at the current Sybase environment
and decide how many table spaces you will need, what types of table spaces
to create, and where you will place them. If your Sybase database is
segmented, you will want to use the sp_helpdb and sp_helpsegment stored
procedures to know the segments that your Sybase database uses and
consider them in your design of the target DB2 database. The sp_helpsegment

segment_name will show you which database objects are on the segment and
which Sybase devices are in the segment.

Careful design of your table spaces can have a huge impact on the
performance and recoverability you attain in the DB2 environment. Look at
the tables and place any high activity tables in a table space by themselves
if you have the resources to do so.
Chapter 5. Database conversion 67

You may want to make sure you separate the indexes and the data. To do so,
you will need to create two DMS table spaces, one to contain the data and
the other to contain the index. This can be accomplished by specifying INDEX

IN tablespace_name in your CREATE TABLE DDL. To separate the index and data,
you must use DMS table spaces.

Remember also in the DB2 environment that the database backup and
recovery is at the table space level. Table spaces can be backed up and
recovered independently from the remainder of the database. This can be a
big advantage if you have large tables.

You will also need to determine whether to use SMS or DMS table spaces, or
a combination of the two. Here are some considerations:

• If you create an SMS table space, data pages for a table in the table
spaces will be allocated as the table grows. Once an SMS table space is
created, you cannot add new containers to the table space but the
physical files in the existing containers can grow as long as the operating
system’s limitation. For the system catalog table space and temporary
table spaces, choosing SMS table spaces is recommended. For details,
see “Designing and Choosing Table Spaces” in Chapter 8, “Physical
Database Design” in the Administration Guide, SC09-2944.

• When you create a DMS table space, you need to specify the container
size, and you can add new containers later if you need to increase the
table space size. You must use DMS table spaces to be able to place data
and indexes in separate table spaces. Also, the DMS table spaces are
more efficient.

To determine how large to make the table spaces, we can use the output from
the sp_helpdb db_name stored procedure to get the size of the database. To
see more details on how the space is allocated, we can use the sp_spaceused

stored procedure. If executed without parameters, this shows the entire
database, or you can specify a table name to see details on a specific table.
Figure 17 shows a breakdown of space allocation, unused space, and space
used by data and indexes for the table.
68 DB2 UDB V7.1 Porting Guide

Figure 17. sp_spaceused stored procedure

The first sp_spaceused stored procedure is without a parameter and shows us
the information for the database.

The second sp_spaceused stored procedure is for the table table01. It shows
that we have 1 row of data, and there is 64 KB reserved. The data and index
are each using 2 KB and there is 60 KB unused. Collecting this data for data
and indexes will help us to determine how many table spaces we need, and
how large to make each.

Another important piece of data we will need to consider before creating our
table spaces is how large to make our PAGESIZE parameter. The PAGESIZE

default is 4 K bytes, but can also be specified as 8 K, 16 K, or 32 K. The page
size will determine the length of rows that can be stored in the table and the
maximum number of columns (see Table 13).

Table 13. PAGESIZE and maximum table size, # columns and row size

PAGESIZE MAXIMUM
TABLE SIZE

MAXIMUM # OF
COLUMNS

MAXIMUM
ROWSIZE

4 K 64 GB 500 4005

8 K 128 GB 1012 8101

16 K 256 GB 1012 16293

32 K 512 GB 1012 32677

1> sp_spaceused
2> go
database_name database_size
------------------------------ -------------
test1 17.0 MB
reserved data index_size unused
--------------- --------------- --------------- ---------------
7694 KB 4870 KB 752 KB 2072 KB
(return status = 0)
1> sp_spaceused table01
2> go
name rowtotal reserved data

index_size unused
-------------------- ----------- --------------- ---------------

--------------- ---------------
table01 1 64 KB 2 KB

2 KB 60 KB

(1 row affected)
(return status = 0)
Chapter 5. Database conversion 69

See the DB2 UDB Administration Guide: Implementation, SC09-2944, for
other considerations such as buffer pools.

5.4.2 Create tablespace statement
The prerequisites for creation of table spaces are the db2icrt command to
create the instance, and the CREATE DATABASE command to create the
database. This is different from Sybase, where you configure your data
server, do DISK INIT to ready the devices, and then do CREATE DATABASE for
database creation.

The format for the CREATE TABLESPACE for our database using SMS table space
would look as shown in Figure 18:

Figure 18. DB2 create table space DDL

The options and values we chose were:

• CREATE — The DDL command.

• REGULAR — The type of table space. The options are REGULAR, LONG, SYSTEM

TEMPORARY, or USER TEMPORARY.

• TABLESPACE — To tell DB2 what to create.

• USING (‘/Dir1/db2inst2/oontainer1’,‘/Dir2/db2inst2/container2’) — The
container definitions. The physical files for the objects in the table space
will be created under these directories.

• MANAGED BY SYSTEM — To tell DB2 we will use SMS for this table space.

• EXTENTSIZE 16 — To specify 16 pages to be written to a container before
moving to the next.

• PREFETCHSIZE 32 — To specify number of pages to be read from the table
space when data fetching is being performed.

The EXTENTSIZE and PREFETCHSIZE can also be specified as K(kilobytes),
M(Megabytes), or G(gigabytes).

CREATE REGULAR TABLESPACE tablespace1
MANAGED BY SYSTEM

USING (‘/Dir1/db2inst2/smscont1’ ,
‘/Dir2/db2inst2/smscont2’)

EXTENTSIZE 16
PREFETCHSIZE 32 ;
70 DB2 UDB V7.1 Porting Guide

To create DMS table spaces, the format is very similar, as shown in
Figure 19:

Figure 19. Create DMS table space

The difference in format between SMS and DMS is in the MANAGED BY

parameter, where we specified DATABASE and the USING parameter where we
specified the FILE option. Also, we must specify the size in number of pages.

If you are planning to use DMS (device) table spaces on AIX operating
system, you must first create new devices (logical volumes) for them as
follows:

1. Log in as root.

2. Execute the mklv command to create logical volumes.

3. Execute the chown command to change the owner and group set of the
logical volumes to match the DB2 instance owner and group.

We will also need to create user temporary space as discussed in 4.1.2.1,
“DB2 table space” on page 32. This would be accomplished as shown in
Figure 20:

Figure 20. Create user temporary table space

Note that USER TEMPORARY is specified in the CREATE TABLESPACE statement.
When you create a declared temporary table using the DECLARE GLOBAL

TEMPORARY TABLE statements, this temporary table space will be used.

CREATE REGULAR TABLESPACE tablespace2
MANAGED BY DATABASE
USING (FILE ‘/Dir3/db2inst2/dmscont1’ 5000,

FILE ‘Dir4/db2inst2/dmscont2’ 5000)
EXTENTSIZE 16
PREFETCHSIZE 32;

CREATE USER TEMPORARY TABLESPACE user_tablespace
MANAGED BY SYSTEM
USING (‘/Dir5/db2inst2/smscont1’,

‘/Dir6/db2inst2/smscont2’)
EXTENTSIZE 16
PREFETCHSIZE 32;
Chapter 5. Database conversion 71

5.5 Create user defined data types

In 4.2.5, “Other data types” on page 48, we discussed user defined data
types. You will need to check the tables to see if you are using user defined
data types.

In DB2 UDB, there are three user defined data types:

• User defined distinct type

• User defined structured type

• User defined reference type

Since Sybase supports only user defined types similar to the DB2 distinct
type, we will focus on that. Consult the DB2 UDB SQL Reference, Volume 1,
SC09-2974 for user defined structured data types and user defined reference
data types.

5.5.1 Create data type statement
You can first execute a SELECT statement to extract the type name from the
systypes table of the source Sybase database and look for user defined types
by specifying where usertype>99. The select statement would look like this:

select name from systypes where usertype > 99

Earlier, when we checked the select from the sysobjects table within our
sample database test1, there were no user defined data types. To show how
you can derive the user defined types information from the Sybase source
database, here we are using the pubs2 database, which Sybase product
provides. If you execute the select statement shown above for the pubs2

database, the output would look like this:

1> use pubs2
2> go
1> select name from systypes where usertype>99
2> go
name

id
mytype
tid

(3 rows affected)
72 DB2 UDB V7.1 Porting Guide

Then you can use the stored procedure sp_help to provide information about
user defined types. The following is the information for the user defined data
type id.

From the output above, you can see the user define data type id has been
created based on the data type VARCHAR and the length is 11. Thus, the
following would create a user defined data type similar to the one in Sybase:

CREATE DISTINCT TYPE id AS varchar(11) WITH COMPARISONS

This data type can be referenced in the CREATE TABLE command as the data
type for a column.

5.5.2 User defined data types and rules
In Sybase, you can create a rule using the CREATE RULE statement and bind it
with a user defined type definition using the sp_bindrule stored procedure.
You can also create a default using the CREATE DEFAULT statement and bind it
with a user defined type definition using the sp_bindefault stored procedure.
When you use a user defined data type bound with the rules or defaults in
table column definitions, these columns inherit the rules, properties and
defaults associated with that user defined type. This is a typical usage of user
defined types in Sybase.

The usage of user defined types in DB2 is different from the one in Sybase.
User defined types in DB2 are also based on the existing data types;
however, you cannot add properties such as rules or defaults to user defined
data types. All rules must be defined as constraints at the column level when
you execute the CREATE TABLE or ALTER TABLE statements.

The purpose of using user defined types in DB2 is normally to benefit from
strong typing (discussed in 4.2.5.2, “User defined data types” on page 50),
which ensures that only those functions and operators explicitly defined on a

1> sp_help id
2> go
Type_name Storage_type Length Prec Scale Nulls Default_name

Rule_name Identity
--------------- --------------- ------ ---- ----- ----- ---------------

--------------- --------
id varchar 11 NULL NULL 0 NULL

NULL 0

(1 row affected)
(return status = 0)
Chapter 5. Database conversion 73

user defined type can be applied to that type of data and which avoids
end-user mistakes during the assignment or comparison of different types.

For example, the user defined data type id, created in the previous section,
cannot be compared with VARCHAR data directly. Sybase user defined types do
not support strong typing and a user defined data type can be compared
directly with its source data type.

Because the usage of user defined type is different between Sybase and
DB2, if you have a user defined type bound with a rule and a default in
Sybase, you should do either of the following when converting Sybase
databases and applications to DB2:

• Create a user defined type in DB2 using the same name and the source
data type.

In this case, you can leave the CREATE TABLE DDL to use the user defined
type but you need to add a constraint and specify the default value to the
DDL to implement the functionality of the rule and the default object. Also
you need to check your application code and put a cast function to all the
SQL statements which compare the user defined type data to other data
type.

• Do not create a user defined type in DB2; rather, use the source data type.

In this case, you should modify the column definition of the CREATE TABLE

DDLs to specify the source data type. You still need to add a constraint
and specify the default value to the DDL to implement the functionality of
the rule and the default object but you do not need to put a cast function to
the SQL statements in your application code.

Checking all your application code and putting a cast function will be time
consuming tasks. Unless you want to utilize strong typing, which Sybase
does not support, we recommend using the system supported data types
instead of user defined data types when you convert Sybase databases to
DB2.

5.6 Creating tables

The CREATE TABLE commands for DB2 and Sybase are quite similar in their
basic formats, but both have options the other does not have. We will focus
primarily on the basics needed for our conversion. One of the differences we
will likely encounter is that for Sybase, you create a table ON a segment,
while for DB2, we create tables IN table spaces. Also pay special attention to
the data types when defining the columns for the table. Differences for the
DB2 CREATE TABLE command we should mention are:
74 DB2 UDB V7.1 Porting Guide

• Sybase tables are created ON segments, DB2 tables are created IN table

spaces.

• DB2 allows indexes and long data to be placed in different table spaces:

- INDEX IN tablespace_name allows you to place the indexes in another
table space.

- LONG IN tablespace_name allows you to place long data types (LONG
VARCHAR, LONG VARGRAPHIC and LOB) data types in another table
space.

• For DB2 tables, all indexes for a table must be in the same table space, for
example, data in tablspc1 and all indexes in tablspc2.

• Sybase and DB2 support CONSTRAINT, which allows you to name the
primary key as well as other unique constraints, but DB2 allows more
options.

• Column default options are important to check for the following
differences:

- Sybase default values for columns is NOT NULL, DB2 is NULL.

- Sybase allows you to specify a DEFAULT value for a column as well as
specify a default value in User Data Types as mentioned above. Pay
close attention to these.

• Sybase allows a PCTFREE specification on the CREATE TABLE command to
specify the free space size on each data page. With DB2 there is a PCTFREE

on the CREATE INDEX command, and also, you can alter a table to provide a
PCTFREE value using the ALTER TABLE command.

5.6.1 CREATE TABLE statement
To illustrate the DB2 CREATE TABLE DDL needed to create a table from our
database test1, first we should look at the table on the Sybase server. To look
at the table we used sp_help table01, shown in Figure 21, to view the table
characteristics.

We will need to collect information about the table as is exists on Sybase, so
we can duplicate in DB2. Some things to look at are:

• Segments on Sybase
• Data types
• Primary key
• Foreign keys
• Constraints
• Indexes, both clustered and non-clustered
Chapter 5. Database conversion 75

• IDENTITY columns — These require special consideration when specifying
START WITH values, as discussed in 4.2.5.1, “Identity columns” on page 49.

Figure 21. sp_help table01 output

1> sp_help table01
2> go
Name Owner

Type
------------------------------ ------------------------------

table01 dbo

user table

(1 row affected)
Data_located_on_segment When_created
------------------------------ --------------------------
default Sep 19 2000 1:07PM
Column_name Type Length Prec Scale Nulls Default_name

Rule_name Identity
--------------- --------------- ------ ---- ----- ----- ---------------

--------------- --------
col1 varchar 40 NULL NULL 0 NULL

NULL 0
col2 varchar 10 NULL NULL 0 NULL

NULL 0
col3 float 4 NULL NULL 0 NULL

NULL 0
col4 smalldatetime 8 NULL NULL 0 NULL

NULL 0
index_name index_description

index_keys
index_max_rows_per_page index_fillfactor index_reservepagegap

-------------------- --

----------------------- ---------------- --------------------

table01_11040069641 clustered, unique located on default
col1,col2

0 0 0

(1 row affected)
No defined keys for this object.
Object is not partitioned.
Lock scheme Allpages
The attribute 'exp_row_size' is not applicable to tables with allpages lock
scheme.
The attribute 'concurrency_opt_threshold' is not applicable to tables with
allpages lock scheme.

exp_row_size reservepagegap fillfactor max_rows_per_page identity_gap
------------ -------------- ---------- ----------------- ------------

0 0 0 0 0
concurrency_opt_threshold

0
(return status = 0)
76 DB2 UDB V7.1 Porting Guide

The first thing we want to see is if the table is created on a Sybase segment.
We saw previously that this database did not use segments so that will not be
a consideration here, although we might want to place the indexes in another
table space.

Next we will look at data types. The review reveals one column col4 with a
definition of SMALLDATETIME. Previously we pointed out that DB2 did not
support this data type, so we will have to resolve this. All other data types
look good. To resolve this we will use the TIMESTAMP data type. This should be
noted since it probably will require some program changes, and will need to
be handled properly in the porting of the data.

Our DDL for CREATE TABLE looks like the following:

CREATE TABLE table01
(

col1 VARCHAR(40) NOT NULL ,
col2 VARCHAR(10) NOT NULL ,
col3 FLOAT(8) NOT NULL ,
col4 TIMESTAMP NOT NULL ,

CONSTRAINT index01 PRIMARY KEY (col1,col2)
)
IN TABLESPACE1;

The only data type we had to change in this example was the SMALLDATETIME,
and we changed that to TIMESTAMP.

We also specified the PRIMARY KEY as defined in the Sybase table and created
the table in the TABLESPACE1 table space.

We should point out a potential problem during the conversion with duplicate
table names. With Sybase the naming conventions are
dbname.owner.table_name; and the DB2 UDB naming conventions are
schema.table_name. If you have tables in your Sybase database with owners
other that the database owner, you may possibly end up with duplicate table
names on your conversion DDL for the new DB2 platform. You will need to
check your Sybase database and resolve any potential duplicates before
creating the DB2 UDB DDL. Figure 22 provides information about duplicates.
Chapter 5. Database conversion 77

Figure 22. Check for duplicate names in your Sybase database

5.6.2 Add constraints
Constraints are rules that the database manager enforces. We will discuss
three types of constraints and their differences in implementation in DB2.

Both Sybase and DB2 support a unique constraint accomplished by creating
an index and specifying UNIQUE in the CREATE INDEX DDL.

Both Sybase and DB2 have a REFERENCES option in the CREATE TABLE command
to specify a column referenced by this column in another table. When
specifying REFERENCES, that column must already exist in the other table.

Sybase has a CREATE RULE command, where a rule is created and then bound
to a user data type or to a column using the sp_bindrule stored procedure.
That rule is then bound to a column and those constraints will be checked on
inserts or updates. A rule can specify limits, ranges or other data
characteristics. They do not override column definitions.

Other than the rule, the constraints are very similar in format and function.
You will need to look at each rule in the database and determine how it
should be handled. Rules are stored in the sysobjects table in each database
with a type of ‘R’, so you can do the following to find your rules:

1. Execute SELECT name FROM sysobjects WHERE type = ‘R’ to find rules defined
in the database

2. Use the sp_helptext rule_name stored procedure to get the information
about rules

With Sybase, to find the constraints specified for a specific table, you can:

• Use the sp_helpconstraint table_name stored procedure get the information
about constraints.

1> select name, count(name) from sysobjects
2> group by name having count(name) > 1
3> go
name
------------------------------ -----------
table01 2

(1 row affected)
1>
78 DB2 UDB V7.1 Porting Guide

• Use the sp_help table_name stored procedure to get information on primary
keys or foreign keys.

• You can also look at the index information to determine if the index has
UNIQUE specified in the creation.

Following is an example of executing the sp_helptext stored procedure to get
information about the rule pub_idrule in the pubs2 database:

DB2 allows you to create constraints when using the CREATE TABLE command,
or add or alter constraints using the ALTER TABLE command. In the example
below, we are going to ALTER the table PUBLISHER to allow only those rows
where pubid is equal to 1389, 0736, 0877,1622, or 1756.

ALTER TABLE PUBLISHER
ADD CONSTRAINT check_pubid
CHECK (pubid IN (‘1389’, ‘0736’, ‘0877’, ‘1622’, ‘1756’)) ;

5.7 Create views

There are many good reasons to create views and use views to manipulate
data:

• The base table can be changed to add new columns and the view will only
be affected if the applications using the view require the use of the
additional column(s).

• You can create views that return only subsets of data to the user. If you
have multiple locations, this could be a way to allow users access to data
for their location only.

1> sp_helptext pub_idrule
2> go
Lines of Text

1

(1 row affected)
text

create rule pub_idrule
as @pub_id in ("1389", "0736", "0877", "1622", "1756")

(1 row affected)
Chapter 5. Database conversion 79

• You can join tables for commonly accessed data, providing a more
efficient retrieval of data.

• Views can be used to control access to sensitive data.

• You can sum values of a column, average the column values or select
certain values such as maximum or minimum.

The database we have selected to convert has views for most of the tables.
For the Sybase system, they are type ‘V’ in the system table sysobjects.

When we did the select to determine the type of objects and how many
objects there were earlier, we had 30 views created.

5.7.1 Create view statement
The CREATE VIEW DDL for Sybase and DB2 are very similar in the basic format.
As with the CREATE TABLE command DB2 has many extensions which Sybase
does not have. We will look at those necessary for the purpose of this
conversion.

As shown in 5.1.1, “Manual conversion” on page 59, the CREATE VIEW DDLs for
Sybase can be generated by the DEFNCOPY utility or the Sybase Central
GUI. Here is a example of the CREATE VIEW DDL for Sybase:

CREATE VIEW view01 (col1, col2, col3, col4)
as SELECT col1, col2, col3, col4 FROM table01

This is a fairly simple view, and you can use this DDL to create a view in DB2
as well.

5.7.2 Change the timestamp format using views
Another application of the view in our conversion effort is to return some of
the values that are presented differently in an acceptable format for the
application programs. For example, the DATE function can be used on a DB2
TIMESTAMP data type column to return the date in mm/dd/yyyy format from a
TIMESTAMP column if the value of the Database country code is 001, which is
USA. The Database country code is derived by the value of the TERRITORY

parameter of the CREATE DATABASE command.

See the following CREATE VIEW DDL for DB2:

CREATE VIEW view02 (col1, col2, col3, col4)
as SELECT col1, col2, col3, col4 FROM table02

Assuming the data type of the column col4 is DATETIME in Sybase and
converted to TIMESTAMP data type for DB2, if we leave the view as it is, the
80 DB2 UDB V7.1 Porting Guide

format returned will be YYYY-MM-DD-HH.MM.SS.NNNNNN
(Year-Month-Day-Hour.Minute.Second.Microseconds).

If we want to retrieve just the date portion of the column col4, we could create
a view selecting DATE(col4) instead of col4. This will cause DB2 to return just
the date portion of the TIMESTAMP in the MM/DD/YYYY format. This does not
work for inserts, so we will need to change programs or SQL to provide the
TIMESTAMP in the correct format. Here is the changed example:

CREATE VIEW view02 (col1, col2, col3, DATE(col4))
as SELECT col1, col2, col3, col4 FROM table02

With this change, we now should see the date returned in MM/DD/YYYY
format.

The primary precautions for views in conversion from Sybase to DB2 are
these:

• Sybase does not allow deletes on multi-table views.

• For Sybase, inserts will not be successful unless all columns specifying
NOT NULL are supplied for an insert.

• There are no options on the Sybase view not supported by DB2, although
DB2 has many more options.

See the DB2 UDB SQL Reference, Volume 1, SC09-2974, and the DB2 UDB
SQL Reference Volume 2, SC09-2975 for more details.

5.8 Create indexes

The CREATE INDEX command is also similar in format and function for the basic
specifications. We will need to identify all the indexes on all tables as we
discussed previously.

The unique index for Sybase is their method of enforcing the unique
constraint. It is a must that we locate all the unique indexes in the Sybase
database and create unique indexes in our DB2 database. You can find
information using the sp_help table_name and sp_helpindex table_name stored
procedures. These will provide the index name, type of index, and columns
used for the index.

Non-unique indexes need to be identified also to ensure that we get optimum
performance on our new DB2 database. There are also options in both
Sybase and DB2 to create an index to allow backward scans or reads.
Chapter 5. Database conversion 81

5.8.1 Indexes in Sybase and DB2
Both Sybase and DB2 CREATE INDEX commands function very similarly.

As with tables, Sybase indexes are created on segments, and DB2 indexes
are created in table spaces. Both allow indexes and data to be in separate
segments or table spaces, but Sybase allows multiple indexes to be on
multiple segments. DB2 allows only one table space for all indexes.

Sybase naming structure for indexes is table_name.index and DB2 UDB is
schema.index. This difference structure will cause potential problems during
the conversion because there can possibly be duplicate names for the
indexes created for the DB2 database. To illustrate we will look at two tables,
table01 and table02:

CREATE TABLE table01(col1 CHAR(2), c0l2 CHAR(4))
CREATE TABLE table02(col1 CHAR(2), c0l2 CHAR(4))

For Sybase, the following create index statements are valid.

CREATE UNIQUE NONCLUSTERED INDEX nc1 ON table01(col1)
CREATE UNIQUE NONCLUSTERED INDEX nc1 ON table02(col1)

The results will be that we have two indexes named nc1 belonging to two
different tables. To drop these indexes in Sybase, you would need to use the
format:

DROP INDEX table01.nc1

Within DB2 indexes are contained in the catalog qualified by schema, so
when these are converted, you will have both indexes in the same schema.
You will need to go through your DDL and make sure you have no duplicate
names for the indexes. One suggestion is to prefix all indexes with table
name during the conversion process.

Another basic difference between the two is the creation and management of
clustered indexes. When you create a table on the Sybase platform, then
create a clustered index for that table, the data and index reside together on
the same segment. For example, If you create a clustered index on the
different segment from the one on which the base table was created, the
table will be moved to the segment which you specify with the CREATE

CLUSTERED INDEX command. This is a handy way to move a table to another
segment.

DB2 maintains the data and index for a clustered index in close proximity, not
actually with the data. Thus, if you have specified index and data in separate
table spaces, even for clustered indexes they will be separate.
82 DB2 UDB V7.1 Porting Guide

If you have created a clustered index on a table, DB2 maintains order in the
data pages during data insert to the table when possible. To keep the order of
the data pages, DB2 searches free space of the data page by the following
algorithm:

1. Search target page. If not found, then:

2. Search any pages in same extent. If not found, then:

3. Append to end of table

5.8.2 CREATE INDEX statement
We will use the same table table01 to illustrate the Sybase CREATE INDEX

command:

CREATE UNIQUE CLUSTERED INDEX index01 ON table01(col4, col5)

We can now do the sp_helpindex stored procedure and look at our results.

For the DB2 table we already have an index that was created when the table
was created, so we will create an index on the columns col4 and col5. Below
is the format we used:

create index index01 on table01 (col4, col5)
cluster allow reverse scans

The index we created for the table was on the column named col4 and col5

and it will allow reverse scans on that index.

1> sp_helpindex table01
2> go
index_name index_description

index_keys
index_max_rows_per_page index_fillfactor index_reservepagegap
-------------------- --

--
--
--

----------------------- ---------------- --------------------
index01 clustered, unique located on default

col4, col5
0 0 0
(1 row affected)
(return status = 0)
1>

1> sp_helpindex t_dtnd_node
2> go
index_name index_description

index_keys
index_max_rows_per_page index_fillfactor index_reservepagegap
-------------------- --

--
--
--

----------------------- ---------------- --------------------
dtndcu clustered, unique located on default

node_nm, node_c, envt_ver_n
0 0 0
(1 row affected)
(return status = 0)
1>
Chapter 5. Database conversion 83

For Sybase, the allow backward scan is a server-wide configuration option
set on by the stored procedure as follows:

sp_configure ‘allow backward scans’, 1

For DB2, reverse scans are an individual index option on the CREATE INDEX

command.

5.9 Database security

Security for the Sybase and DB2 systems are very similar to one another at
the level of the GRANT and REVOKE functions. There is where any similarity
stops. Sybase uses its own security, while DB2 uses the operating system for
its security.

5.9.1 Sybase security
The security for the Sybase system consists of the GRANT and REVOKE

commands for user access to user tables, columns within tables, stored
procedures, and views. With these commands you can grant a user
privileges to select, insert, or update tables or views. You can also grant a
user permission to execute a stored procedure. These privileges can be
removed using the REVOKE command. As mentioned previously, the
resemblance ends here.

5.9.1.1 Sybase logins
Sybase security has a login for each user, much like an operating system. To
allow a user access to the Sybase system, that user must be added to the
Sybase server by using the stores procedure, sp_addlogin. The procedure
requires a user name, password, and optionally can specify the default
database for the user once logged in. The information is stored in the
syslogins table in the master database.

At this point you will be logged into the server but cannot really do anything.
You must add the user to each database within the server that the user is to
have access to that database. This is done in a couple of ways:

• You can define user groups and group users by access requirements.

• You can alias one user to another user with like access requirements.

• You can add each user individually.
84 DB2 UDB V7.1 Porting Guide

5.9.1.2 Sybase users
If you choose the first method of defining groups and assigning users to those
groups, the first thing you need to do is add the group. This is done through
the sp_addgroup stored procedures, as seen in the following example:

Using this method, the GRANT or REVOKE operations are done using the group
name, and all users within that group have the same privileges. Using the
example above, the grant privileges will be given to testgroup. The user is
then added using the sp_adduser stored procedure and specifying the group
parameter.

The second method requires setting up a user with the sp_adduser stored
procedure, then GRANT or REVOKE privileges based on this user. Others with the
same resource requirements would then be added using the sp_addalias

stored procedure, as demonstrated here:

The user user3 was added using sp_addlogin, then in the database we will use
the sp_addalias to give user the same privileges as user2. Any changes to
either the testgroup or user2 will now be granted to user3 or revoked from
user3.

1> sp_addlogin user2, pass07, master
2> go
Password correctly set.
Account unlocked.
New login created.
(return status = 0)
1> sp_addgroup testgroup
2> go
New group added.
(return status = 0)
1> sp_adduser user2, user2, testgroup
2> go
New user added.
(return status = 0)

1> sp_addlogin user3, pass08
2> go
Password correctly set.
Account unlocked.
New login created.
(return status = 0)
1> sp_addalias user3, user2
2> go
Alias user added.
(return status = 0)
Chapter 5. Database conversion 85

The last method is to add users using the sp_adduser stored procedure and
then GRANT or REVOKE privileges individually.

Here we added the login, added the user to the database and granted select
permission on the table mytable.

To determine the security on Sybase objects (tables, stored procedures,
views), you use the sp_helprotect stored procedure, as shown in Figure 23.

Figure 23. sp_helprotect stored procedure

The output from sp_helprotect tells you who granted the permissions, what
privileges the user has, and whether the user can grant these privileges to
another user, under the grantable column.

> sp_addlogin user4, pass09
2> go
Password correctly set.
Account unlocked.
New login created.
(return status = 0)
1> sp_adduser user4, user4
2> go
New user added.
(return status = 0)
1> grant select on mytable to user4
2> go

1> sp_helprotect mytable
2> go
grantor grantee type action

object column grantable
--------------- --------------- -------- ----------------------------

--------------- ---------- ---------
dbo testgroup Grant Delete

mytable All FALSE
dbo testgroup Grant Insert

mytable All FALSE
dbo testgroup Grant References

mytable All FALSE
dbo testgroup Grant Select

mytable All FALSE
dbo testgroup Grant Update

mytable All FALSE
dbo user4 Grant Select

mytable All FALSE

(1 row affected)
(return status = 0)
1>
86 DB2 UDB V7.1 Porting Guide

5.9.2 DB2 security
To protect data and resources associated with a database server, DB2 uses a
combination of external security services and internal access control
information. To access a database server you must pass some security
checks before you are given access to database data or resources.

The first step in database security is called authentication, where the user
must prove he/she is who he/she says he/she is. Authentication of a user is
completed using the operating system or a separate product such as DCE.
To authenticate a user, the security facility requires a user ID and a password.
This user ID must have been created in the external security service. For
example, if you use the UNIX operating system to perform the authentication,
the user ID has to be created by the mkuser command and the password
should be set by the passwd command.

The second step is called authorization, where the database manager
decides if the validated user is allowed to perform the requested action or
access the requested data. Authorization is performed using DB2 facilities.
DB2 tables and configuration files are used to record the permissions
associated with each authorization name. As in Sybase, the permissions to
individual tables, columns, or other objects is done through the GRANT or
REVOKE commands.

5.9.3 Migrating users and group definitions
Migrating user security information from Sybase to DB2 will require planning
and gathering data on the current Sybase environment. For the login
information to Sybase, there is no stored procedure to provide that
information. It is very easy to construct a SELECT statement to extract the
names:

select name from master..syslogins order by name

This statement provides a sorted list of the logins for the server.

Database users and security information
All user and group information can be extracted from the database as follows:

1. sp_helpgroup provides a list of the groups assigned in the database.

2. sp_helpuser provides a list of users, the group they are associated with and
the login name if different from user name.

3. sp_helprotect extracts the table and other object permissions.
Chapter 5. Database conversion 87

New DB2 users
You can use the information obtained from Sybase to set up the new DB2
users and groups. If you choose to use the operating system’s security
mechanism for the authentication, you should create users and groups for
DB2 using the operating system’s command such as mkuser and mkgroup.

Since DB2 users and groups are also users and groups created in the
external security service, you should take care that the new users and groups
will not interfere with the security policy in the server, particularly if the other
application is running on the same server.

5.9.4 Granting authorities and privileges
As mentioned earlier, the GRANT and REVOKE commands to administer
privileges is very similar between the two systems. There are some
authorities and roles within Sybase that may need addressing depending on
your usage of them.

Sybase authorities and roles
sa This is the system adminitrator (SA) authority, which is

the Sybase counterpart of the SYSADM authority in
DB2. It allows all functions to be performed, including
all administrative tasks. There are also ROLES that
can be assigned to individual logins to allow a subset
of the SA authorities.

sa_role This role allows the SA to grant the authorities of SA
to another user or users.

sso_role This is the System Security Officer role and allows
users with this role to administer security functions.

oper_role This is the operations role and allows shutdown,
backup, restore tasks for users with this role.

replication_role This role is used only if you are using the replication
server.

sybase_ts_role This is Sybase Tech Support role allows the SA to
perform special duties, or tasks requested by Sybase
technical support.

user_defined roles Users with this role can create roles and assign to
users. In DB2, you can implement user defined roles
using groups and granting specific priviledges to those
groups.
88 DB2 UDB V7.1 Porting Guide

DB2 authorities
DB2 has four levels of authority for support tasks:

SYSADM Level for system administration tasks.

SYSCTRL This provides ability to do almost any administrative
task, but does not have authority to modify the
instance configuration or access database objects
unless granted specific permission.

SYSMAINT Users with this authority can perform tasks like
backups, update configuration files, restore table
spaces, reorganize tables, or execute the runstats

utility.

DBADM Users with this authority can perform tasks like
loading data tables, query tablespace states and other
functions at the database level.

SYSADM, SYSCTRL, and SYSMAINT authorities are not assigned through
the GRANT statement, but are set up or changed in the database manager
configuration file. DBADM authority is assigned through the GRANT statement.

Privileges
Privileges in Sybase and DB2 are given to or removed from users or user
groups by means of the GRANT and REVOKE commands. The formats are almost
identical.

For DB2, the GRANT command format is identical to Sybase, as follows:

GRANT SELECT ON mytable TO user2
Chapter 5. Database conversion 89

90 DB2 UDB V7.1 Porting Guide

Chapter 6. Data conversion

This chapter deals with the movement of data from Sybase databases to DB2
UDB Version 7.1. The first part of the chapter discusses the two primary ways
to unload data from Sybase. The second part of the chapter deals with the
load of the data into DB2. The third part of the chapter explores the use of the
DataJoiner to unload data from Sybase tables into integrated exchange
format (IXF) files which contain table and index definitions, and use the IXF
files to build the target tables with the indexes.

6.1 Unload data from Sybase

When unloading data from a Sybase table into a text file, you have a choice
of using either the Sybase BCP (bulk copy procedure) tool or a select
statement. The choice of which tool to use will depend primarily on the type of
data that you will be moving over to DB2. You will need to consider the
following when making that choice:

• The BCP utility is limited in the format of the data written out to the file.

• The BCP utility outputs a datetime or smalldatetime data type field into the
format that DB2 IMPORT or LOAD utility does not accept.

• The BCP utility cannot put text or character fields in quotes to allow the
same character as a row terminator (a carriage return is the default) to
appear in the data.

These factors would suggest that the BCP utility only be used when moving
tables in the conversion process consisting of basic data types such as
character and integer. If the table contains a datetime, smalldatetime type
fields then the best choice is to use the select statement to unload the data.
The reason is that datetime fields in Sybase are converted during by the BCP
utility. The result is that a date formerly represented as (12/15/99), for
example, is now represented as (DEC 15 1999). This new format is not
accepted by the DB2 IMPORT or LOAD utility, and will cause problems when
you try and import it back into DB2 table.

The other case when you should use the select statement is when the table
has text fields including carriage returns. In this case, you should use the
select statement and put the text in character delimiters so that the DB2
IMPORT or LOAD utility can handle the carriage returns as a part of the text
data.
© Copyright IBM Corp. 2000 91

In this section, first we discuss data unload using the BCP utility, and then
show how to use the select statement.

6.1.1 Unload data using BCP utility
The BCP utility within Sybase has numerous options for unloading data from
Sybase tables and databases. In this book, we will assume that since you are
converting from Sybase to DB2, you have a basic understanding of the BCP
process and its options and limitations. We will only discuss using the BCP
process in two methods: without a format file, and with a format file. The basic
command syntax for the bcp command is as follows:

bcp <database>.<owner>.<tablename> out <filename>.<filename extension>
<parameter options> -S<servername> -U<username> -P<password>

6.1.1.1 Simple BCP without a format file
Here is a simple example to use the BCP utility:

bcp test1.dbo.table01 out table01.bat -c -Sununbium -Usa -Padmin

By executing this command, you will obtain a text file table1.bat , including
the unloaded data from the dtp1.dbo.table01 table.

The basic example listed above consists of the following:

• bcp

This is the primary Sybase command to initiate the BCP utility.

• test1.dbo.table01

This is the database and table that we are unloading.

• out

This is a primary Sybase command directing the output location.

• table01.bat

This is the file that you are unloading the table into, you could further
specify a directory for this file to reside in.

• -c

This option specifies that the data be output in character format, and that
the default field terminator (called the column delimiter in DB2) of tab “\t” is
going to be used and new line “\n” will be used as the end of row delimiter.
You can use the -t option and -r option to specify other characters for
the field terminator and row terminator respectively.
92 DB2 UDB V7.1 Porting Guide

• -Sununbium

This specifies the server name.

• -Usa

This specifies the user name.

• -Padmin

This specifies the password.

6.1.1.2 Simple BCP process with a format file
If you do not want to unload all the columns or you want to change the order
of the columns, you should use a format file with the BCP utility. Here is a
simple example:

bcp test1.dbo.table02 out table02.bat -f “table02.fmt” -e
“bcperror02.txt” -Sununbium -Usa -Padmin -T 640000

Note that we specify the -f option with a format file instead of the -c option.
In this example, the BCP utility will generate the output file in the format
which is defined in the format file table02.fmt. The format file can be created
interactively within the BCP process by just not specifying the -f or -c

option, or if you created the format file in a previous BCP operation, it can be
reused by specifying the file name. In our example, the source table’s column
definition is as follows:

create table table02 (
col01 varchar(10) not null,
col02 varchar(40) not null,
col03 varchar(40) ,
col04 varchar(10) ,
col05 varchar(10) ,
col06 varchar(50)
)

And the following is an example of the format file used with the BCP utility:

10.0
5
1 SYBCHAR 0 10 ", " 1 col01
2 SYBCHAR 0 40 ", " 2 col02
3 SYBCHAR 0 40 ", " 3 col03
4 SYBCHAR 0 10 ", " 4 col04
5 SYBCHAR 0 10 ", " 5 col05

This format file shows that all the columns except col06 are to be unloaded,
and that commas are used as the field terminators (column delimiters) and
that (\n) is used as the end of line terminator.
Chapter 6. Data conversion 93

Also, we specified the following options in our example. You can specify
these options whether a format file is used with the BCP utility or not:

• -e “bcperror02.txt”

This option adds a path to route any errors that occurred into an error file
that we define.

• -T 6400000

This option is used when the table you are unloading may contain a row
that is more than 32 KB (16 pages) in size. If you have a row in the table
that exceeds this size and you do not specify the -T option, then any data
on that row past 32 KB will not be output. Therefore, you should review
your data prior to the unload process to prevent any truncation of the row
data.

6.1.2 Unload with a select statement
The preferred way to unload data from a Sybase table is to use the select
statement. The select statement allows for maximum flexibility and control
over how the data is going to be formatted and delimited. With a select
statement you can unload the datetime and smalldatatime fields into the
format which the DB2 IMPORT and LOAD utility will accept. You can also put
double quotes or other characters around any text fields, which will eliminate
any import problems that may occur because of special characters or
carriage returns embedded in the fields. We will show two examples of using
the select statement to unload data from Sybase. The first will be unloading
the same table that we did with the BCP process described previously and
the second select statement will be using a different table that has a datetime

field.

6.1.2.1 Select statement unload process
The following is the select statement that would be used to unload the data
from the same table for which we used the BCP utility in the previous
examples. This example is saved to a file and then we would execute it within
isql with a batch command.

set nocount on
go
USE test1
go
select '"' + col01 + '"' ,',',

'"' + col02 + '"' ,',',
'"' + ISNULL(col03, '')+ '"' ,',',
'"' + ISNULL(col04, '')+ '"' ,',',
'"' + ISNULL(col05, '')+ '"' ,',',
94 DB2 UDB V7.1 Porting Guide

'"' + ISNULL(col06, '')+ '"'
from dbo.table02
go

The first '"' + col01 + '"' extracts the col01 column enclosed by double
quote (“) characters. When we import the unloaded file into DB2, the
IMPORT or LOAD utility will handle the double quote characters as the
character delimiters.

We then put a comma (,) that will be a column delimiter for the IMPORT or
LOAD utility.

For the columns that may have NULL values, you should use the ISNULL

function so that the select statement will not generate the string ‘NULL’ for
null values.

Now that you have created the SQL file and saved it you need to execute it
from the command line. You would enter the following statement:

isql -Usa -Sununbium -Padmin -otable02.dat -itable02.sql -n -w160 -h-1

This command consists of the following:

• -Usa

This specifies the source database userID.

• -Sununbium

This is the source server name

• -Padmin

This is the userID's password

• -otable02.dat

This is the output data filename that you want to route the output to.

Note that you should specify a character for the character delimiter that the
unloaded data does not have. Otherwise, you cannot load the unloaded
data into the target DB2 table correctly. It is the user's responsibility to
ensure that the chosen delimiter character is not part of the data to be
moved.

Note
Chapter 6. Data conversion 95

• -itable02.sql

This example uses table2.sql as the file name that contains your select
statement.

• -w160

This option specifies the line width of the output file. If the output row
exceeds the default line width 80 bytes, you need to specify this option.

• -h -1

This will specify that headers be included only once in the file.

6.1.2.2 Unloading data that contains text data type
When the source table has a text or image data type field which is longer than
32 KB, there is a consideration you should take. Here is a select statement
for a table that contains a text data type column col03, and whose maximum
length is 40 KB:

set textsize 40960
go
set nocount on
go
use dtp1
go
select '"' + col01 + '"' ,',',

'"' + col02 + '"' ,',',
'"' + col03 + '"'

from dbo.table03
go

Note that the set textsize statement is executed before the select statement.
The set textsize statement specifies the maximum length, in bytes, of text or
image data type field to be returned with a select statement. In our case we
should specify 40960 as the maximum length of the text field. The default
value is 32 K.

6.1.2.3 Unloading data with a datetime data type
The datetime and smalldatetime data types in Sybase present the biggest
challenge when converting to DB2. The reason is that no matter how you
enter a date into Sybase it will always be displayed with the character
equivalent for the month. This creates a problem when trying to import that
field into a DB2 timestamp field, because DB2 will not understand “JAN” or
“FEB” as a month.
96 DB2 UDB V7.1 Porting Guide

The table we are going to unload contains a datetime field whose first value is
a date of “May 21 2000 1:15PM”. If we were to use the BCP utility with the -c

option to unload this field, then it would be formatted as character and they
would be mismatched when importing to DB2. However, by using a select
statement with the CONVERT function, we can convert these fields over to a
standard date time format to import into DB2. The following example will
demonstrate how the datetime filed is converted. We have also included the
Sybase table design as well as a sample line of data to help with
understanding the SQL example.

Table design:

col01 varchar(10) not null
col02 varchar(40)
col03 int not null
col04 datetime not null

Table data, first 2 rows:

data1,data2,1000,May 21 2000 1:15:53:716PM
data1,data2,1000,May 21 2000 1:15:53:913PM

Note that this is how the data would look if you were to use the BCP utility to
unload the table.

Here is the select statement to unload and convert data:

set nocount on
go
USE dtp1
go
select '"' + col01 + '"' ,',',

'"' + ISNULL(col02, '')+ '"' ,',',
col03 ,',',
‘”’ + substring(convert(char(12), col04,105),7,4)+

substring(convert(char(12), col04,105),6,1)+
substring(convert(char(12), col04,105),4,2)+
substring(convert(char(12), col04,105),6,1)+
substring(convert(char(12), col04,105),1,2)+
substring(convert(char(12), col04,105),6,1)+
substring(convert(char(12), col04,108),1,2)+
substring(convert(char(12), col04,102),5,1)+
substring(convert(char(12), col04,108),4,2)+
substring(convert(char(12), col04,102),5,1)+
substring(convert(char(12), col04,108),7,2)+
substring(convert(char(12), col04,102),5,1)+
substring(convert(char(26), col04,109),22,3) + ‘”’
Chapter 6. Data conversion 97

from dbo.table04
go

You can break down this example as follows:

• select '"' + col01 + '"',',','"' + ISNULL(col02, '')+ '"' ,',', col03

This part extracts the col01 and col02 column enclosed by double quote (“)
characters. For the column col02, you need to put the ISNULL function to
avoid returning the character string NULL for null values. For the column
col03, double quote characters are not necessary as it is an integer
column.

• ‘”’ + substring(convert(char(12), col04,105),7,4)+...

The next 13 lines using the SUBSTRING function and CONVERT function extract
the datetime data field and convert it into the format which the DB2
IMPORT or LOAD utility can accept. To perform the format conversion, we
used the CONVERT function with the style parameter (the third argument)
which determine the output format. Table 14 shows the style number we
used in this example and the output format.

In our example, the first 6 lines are for the date part (yyyy-mm-dd-), and
the next 6 lines are for the time part (hh.mm.ss.). The last line is for the
microsecond part.

Table 14. Style number and output format for the convert function

You would save this select statement as the file table04.sql and execute it
with isql using the following statement:

isql -Sununbium -Usa -Padmin -o”table04.dat” -i”table04.sql” -h-1

The result of this would be a file output to table04.dat. The first 2 rows of that
file would look like this:

“data1”,”data2”,1000,2000-05-21-13.15.53.716
“data1”,”data2”,1000,2000-05-21-13.15.53.913

As you can see, we have converted the datetime fields over to a standard
DB2 timestamp format.

Style number Output format

102 yyyy.mm.dd

105 dd-mm-yyyy

108 hh:mm:ss

109 hh:mi:ss:mmmAM (or PM)
98 DB2 UDB V7.1 Porting Guide

6.1.3 Loading data into DB2 UDB
The process for loading the data into DB2 is handled using either the LOAD
or the IMPORT utility. The differences between the two processes are quite
dramatic when comparing performance. This stems from the fact that the
IMPORT utility is executing SQL INSERTs, and DB2 needs to perform several
functions such as checking constraints, firing triggers, and writing log records
accordingly. The LOAD utility writes formatted pages directly into the
database and performs faster than the IMPORT utility. Table 15 highlights the
basic differences between the two processes.

Table 15. IMPORT utility and LOAD utility

6.1.4 DB2 IMPORT and LOAD utilities
The DB2 IMPORT utility fits into the Sybase-to-DB2 conversion process in
several ways. First, it can be used as a design and proof-of-concept utility in
the early stages of the conversion effort. Second, it can play a primary role in
moving small and medium size tables. As we will discuss later in this chapter,
the IMPORT utility can also create tables and indexes if you have PC/IXF
format data files. The IMPORT utility is a very versatile and flexible tool in the
conversion process. For tables with large amount of data, you should use the
LOAD utility because it is faster than the IMPORT utility.

IMPORT utility LOAD utility

Slower than the LOAD utility when moving
large amounts of data.

Fast for large amounts of data because it
writes formatted data.

Will fire triggers. Will not fire triggers.

Will check constraints. Will not check constraints.

Creation of tables and indexes supported
with PC/IXF format input file.

Tables must exist.

Supports import into tables and views. Supports loading into tables only.

The table spaces in which the table and its
indexes reside are online for the duration
of the import.

The table spaces in which the table and its
indexes reside are offline for the duration
of the load operation.

All rows are logged . Minimal logging is performed.
Chapter 6. Data conversion 99

The basic syntax to execute the IMPORT and LOAD utilities is as follows:

IMPORT FROM filename OF filetype MODIFIED BY filetype-mod MESSAGES
filename INSERT INTO table-name

LOAD FROM filename OF filetype MODIFIED BY filetype-mod MESSAGES
filename INSERT INTO table-name

As you can see, the basic syntax for these utilities is very similar. Both of
them load the data from the file specified by the FROM parameter. If you specify
the REPLACE option instead of the INSERT option, the target table will be emptied
first, and then the data will be loaded. There are more options that can be
specified but for the purposes here we will only be using options that pertain
to the data we unloaded from Sybase. In addition we will also assume that the
tables have already been created in the DB2 table space.

Other considerations involve the use of delimiters. The default column
delimiter for Sybase BCP utility is a tab; however, for DB2 IMPORT and
LOAD utilities, it is a comma. You may want to standardize the use of one of
these to prevent errors when loading the data.

If you decide you would like a more detailed look at the IMPORT or LOAD
utility, refer to the DB2 UDB Data Movement Utilities Guide and Reference,
SC09-2955 for a more complete understanding of the utilities and the
parameters available.

6.1.5 Load data to DB2 from Sybase BCP file
Make sure you have connected to the target database before performing
these commands.

Here is an example of the basic IMPORT command using the REPLACE option:

IMPORT FROM table01.dat OF DEL MODIFIED BY COLDEL0x09 MESSAGES
table01.msg REPLACE INTO table01

If you want to use the LOAD utility, the command would be the following:

LOAD FROM table01.dat OF DEL MODIFIED BY COLDEL0x09 MESSAGES table01.msg
REPLACE INTO table01

We are using the file type modifier COLDEL0x09 in this example. This means we
are using the tab character as column delimiters. As we addressed in 6.1.1.1,
“Simple BCP without a format file” on page 92, the tab character is the default
column delimiter of the Sybase BCP utility. If you chose to use the default
column delimiter when unloading the data using the BCP utility, COLDEL0x09
must be specified.
100 DB2 UDB V7.1 Porting Guide

If you explicitly specify the comma character as the column delimiter using
the -t option of the BCP utility or using the format file as shown in 6.1.1.2,
“Simple BCP process with a format file” on page 93, you do not need to
specify the file type modifier COLDEL option for the IMPORT or LOAD utility
since the comma character is the default column delimiter.

IMPORT FROM table01.dat OF DEL MESSAGES table01.msg REPLACE INTO table01

When you are loading the data into a remote database using the LOAD utility,
you need to specify the CLIENT option. For example, when the unloaded data
is on a Windows workstation and the target database is on a remote AIX
server, the load command you should execute from the Windows workstation
would be as follows:

LOAD CLIENT FROM C:\output\table01.dat OF DEL MODIFIED BY COLDEL0x09
MESSAGES table01.msg REPLACE INTO table01

Note that the input file should be specified using the absolute path.

When the LOAD command finishes executing, you can open the message file
to view the results. Here are the contents of the message file associated with
running the import command just shown:

6.1.6 Load data to DB2 from Sybase select statement file
This example is going to load the data from the data file created in 6.1.2,
“Unload with a select statement” on page 94. This file was output with double
quotes (“) around all of the character fields, and these are the default
character delimiters. If you have specified a character other than the double
quote, you need to specify it using the file type modifier CHARDEL of the
IMPORT/LOAD utility. Here is a sample IMPORT command:

IMPORT FROM table02.dat OF DEL MODIFIED BY CHARDEL” DELPRIORITYCHAR
MESSAGES table02.msg RESTARTCOUNT 2 REPLACE INTO table02

SQL3109N The utility is beginning to load data from file
"table01.dat".
SQL3110N The utility has completed processing. "5" rows were read from the input file
SQL3221W ...Begin COMMIT WORK. Input Record Count = "5".
SQL3222W ...COMMIT of any database changes was successful.
SQL3149N "5" rows were processed from the input file. "5" rows were
successfully inserted into the table. "0" rows were rejected.
Chapter 6. Data conversion 101

In this example, we also specified the file type modifier DELPRIORITYCHAR. This
is necessary when the character fields have carriage returns as a part of the
data. By default, the IMPORT or LOAD utility interprets a carriage return as
the end of row. However, if you specify the file type modifier DELPRIORITYCHAR,
carriage returns within text enclosed by the character delimiter will be
handled as a part of the data.

Also note that we specify the RESTARTCOUNT 2 option to skip the first 2 rows of
the input data because they are the header generated by the select statement
and should not be loaded into the target DB2 table.

If you want to use the LOAD utility, the command would be:

LOAD FROM table02.dat OF DEL MODIFIED BY CHARDEL” DELPRIORITYCHAR
MESSAGES table02.msg RESTARTCOUNT 2 REPLACE INTO table02

6.1.7 Load data to DB2 from Sybase with identity columns
As discussed in 4.2.5.1, “Identity columns” on page 49, both Sybase and DB2
can have tables with an identity column, which generates a unique sequential
number for each row in the table. When you are converting a Sybase table
with an identity column to DB2 table, the unload process is same as the other
tables; however, the IMPORT and the LOAD utility have some parameters
how to deal with identity values, and you need to use one of them depending
on your requirement.

When loading the data into a table with an identity column, you have two
options:

• Have all the identity values regenerated by DB2 UDB when loading the
data

• Retain the identity values stored in the source Sybase table

Next we will discuss which parameter of the LOAD or IMPORT utility you
should use for each case.

When you create a table with an identity column in a DB2 database, make
sure to specify the GENERATE ALWAYS option in the identity column definition.
This option will ensure that any part of your application using the identity
column will retain the same functionality that had within Sybase.

Note
102 DB2 UDB V7.1 Porting Guide

6.1.7.1 Regenerate identity values
If you prefer to have all the identity values regenerated by DB2 UDB when
loading the data, specify the file modifier IDENTITYIGNORE of the IMPORT or
LOAD utility. This modifier instructs the LOAD or IMPORT utility that data for
the identity column is present in the input data file but should be ignored. This
results in all identity values being generated by the utility.

Here is a sample IMPORT command:

IMPORT FROM table05.dat OF DEL MODIFIED BY CHARDEL” DELPRIORITYCHAR
IDENTITYIGNORE MESSAGES table05.msg RESTARTCOUNT 2 REPLACE INTO table05

Here is a sample LOAD command:

LOAD FROM table05.dat OF DEL MODIFIED BY CHARDEL” DELPRIORITYCHAR
IDENTITYIGNORE MESSAGES table05.msg RESTARTCOUNT 2 REPLACE INTO table05

In these example, we are assuming that the file table05.dat is the unloaded
data from Sybase using a select statement and includes the identity values.

6.1.7.2 Retain the identity values
When you are converting a Sybase table with an identity column to DB2
table, and you wish to retain the identity column value from the source
Sybase table, use the file modifier IDENTITYOVERRIDE of the LOAD utility. This
modifier instructs the LOAD utility to load the identity values supplied in the
input file. This file modifier is not available for the IMPORT utility. Here is a
sample LOAD command:

LOAD FROM table05.dat OF DEL MODIFIED BY CHARDEL” DELPRIORITYCHAR
IDENTITYOVERRIDE MESSAGES table05.msg RESTARTCOUNT 2 REPLACE INTO
table05

In this example, we are assuming that the file table05.dat is the unloaded
data from Sybase using a select statement and includes the identity values.

When you wish to retain the identity column value from the source Sybase
table, specify the highest identity value in the source table plus 1 with the
start with option in the identity column definition of the create table

statement. Otherwise, after loading the data into the target DB2 table, a
future insert may generate a duplicate identity value. This is because the
LOAD utility does not keep track of the values when using the file modifier
identityoverride. Therefore, the first insert after the loading will generate
the identity value which is specified with the start with option of the create

table statement.

Note
Chapter 6. Data conversion 103

6.2 Data conversion using DataJoiner

DataJoiner provides the ability to view popular relational data sources (DB2
Family, Oracle, Sybase, SQL Server, Teradata, and others) and non-relational
data sources (IMS and VSAM) as if they were local DB2 data sources.

Using DataJoiner may represent a significant savings of time and effort if it is
available to you. Once you have created nicknames referring to Sybase
tables respectively, you can handle the Sybase tables as if they were DB2
tables. Thus, you can use the EXPORT utility to unload data from Sybase
tables. The benefit of using the EXPORT utility is that you can unload data
from Sybase tables into integrated exchange format (IXF) files.

An IXF file includes not only unloaded data, but also table structures such as
column name, data type, and primary key name. If a source Sybase table has
indexes, the exported IXF file from the table has definitions of those indexes
as well. Once you have unloaded a Sybase table and indexes on the table
into an IXF file, you can use it as the input for the IMPORT utility. Executing
the IMPORT utility with the CREATE option against the target DB2 database,
you can accomplish the tables, indexes, and data conversion all at one time.

Of course, before using DataJoiner, the database design will have to be
implemented in DB2 on the server. That is, the same jobs that we used to
create the database, table spaces, and so forth will have to be run to use this
approach as well.

6.2.1 Conversion scenario
In our project, we have performed the following steps to convert table and
indexes from the source Sybase database to the target DB2 database.

• Installing the DataJoiner product, creating a DataJoiner instance and
database, and configuring DataJoiner to access Sybase tables

When creating a table from an IXF file, not all attributes of the original table
are preserved. For example, referential constraints, foreign key definitions,
and user-defined data types are not retained. Please refer to ‘Recreating
an Exported Table’ in Chapter 2 ‘Import’ of the Data Movement Utilities
Guide and Reference, SC09-2955 to see which attributes of the original
table are retained.

Note
104 DB2 UDB V7.1 Porting Guide

• Running the EXPORT utility by the DataJoiner instance owner and
exporting source Sybase tables to IXF files

• Running the IMPORT utility with the CREATE option by the DB2 instance
owner, and creating tables, indexes, and importing data at a time

Figure 24 shows the table and index conversion scenario using DataJoiner.

Figure 24. Table conversion using DataJoiner

6.2.2 Installing and configuring DataJoiner for AIX
In our project, we have installed DataJoiner in the same RS/6000 as we have
installed DB2 UDB V7.1 and Sybase Adaptive Server V12. If you want to
install the DataJoiner product on a different machine, you need to install
Sybase Open Client with DataJoiner so that DataJoiner can access Sybase
databases.

DataJoiner Version 2.1.1 on AIX is the version that we used in our project.
For more detailed information on the installation and configuration of
DataJoiner, refer to DataJoiner Implementation and Usage Guide,
SG24-2566.

6.2.2.1 Installing and configuring the base product
After inserting the DataJoiner distribution media in the appropriate drive, you
can install the product as follows:

1. From an AIX shell and with root user, run the command:

smitty install_latest

2. Input your installation device identifier (for example, /dev/cd0).

Target DB2 Database

DataJoiner Database

Nick Name

Export
Source Sybase Database

Source Table

Index

Target Table

Index

IXF
File

Import

Mapping
Chapter 6. Data conversion 105

3. On the next screen, select the components you want to install (with F4
key), or select all_latest

After installing DataJoiner base product, the configuration includes the
following steps:

1. Create an AIX group for the DataJoiner instance (for example, djinst)
using smit or with the AIX command:

mkgroup -A djinst

2. Create an AIX user for the DataJoiner instance (for example, djinst),
belonging to the djinst group previously created, using smit, or with the
AIX command:

mkuser pgrp=djinst djinst

3. Create a DataJoiner instance for the djinst user previously defined, with
the following command:

/usr/lpp/djx_02_01_01/instance/db2instance djinst

The three commands previously described have to be issued by root user.

4. At this point, you can login to the AIX system as the djinst user and add
the following line in the .profile file (running in a Korn shell):

. /home/djinst/sqllib/db2profile

Where /home/djinst is the djinst home directory.

5. Open the db2profile file in the sqllib subdirectory of djinst home
directory (/home/djinst) and modify the lines as follows:

The environment variable DJXCOMM specifies the data access modules that
DataJoiner loads when the DataJoiner instance is started. You need to
specify a different data access module for each data source type.

In our project, we used the DB-Library to access Sybase tables, therefore
we specify dblib to the DJXCOMM environment variable here. You can also
use the Client-Library by specifying ctlib to the DJXCOMM environment
variable. The DB-Library and the Client-Library are contained in Sybase
Open Client.

DB2COMM=TCPIP
export DB2COMM
...
DJXCOMM='dblib'
export DJXCOMM
106 DB2 UDB V7.1 Porting Guide

The DJXCOMM environment variable can have multiple values. If you also
intend to access DRDA data sources (such as DB2 for OS/390) from
DataJoiner, specify drda (communication protocol is APPC) or drdaIP
(communication protocol is TCP/IP) for the DJXCOMM environment variable.
Then DataJoiner will access DRDA data sources using the DRDA protocol
through the DDCS component which is included in DataJoiner. To access
tables on DB2 UDB V5 or V6 from DataJoiner, specify db2ra (DB2 private
protocol), drda (DRDA APPC), or drdaIP (DRDA TCP/IP).

You cannot use db2ra for DB2 UDB V7. Using the DB2 private protocol,
DB2 clients can only access DB2 servers with a release level which is in
the range of one level lower than the client to two levels higher than the
client. The Client Application Enabler (CAE) included in DataJoiner V2.1.1
is at the Version 2 level and thus cannot access DB2 UDB V7.1 server
directly (you will receive SQLCODE -5048). You should specify drdaIP or
drda for the DJXCOMM environment variable so that DataJoiner can
communicate with DB2 UDB V7.1 using DRDA protocol.

6. Execute the djinst .profile file, for example, with the command:

. $HOME/.profile

7. At this point, the DataJoiner can be started by the djinst user with the
command:

db2start

8. A DataJoiner database can be created, for example, with the command:

db2 create database DJDB

6.2.2.2 Configuring DataJoiner to access Sybase
In this section we describe the configuration of DataJoiner for the connection
to the Sybase database.

Configuration of DataJoiner Data Access Modules
1. Login as root and add the following lines in the /.profile file:

SYBASE=/usr/sybase/OCS-12_0
PATH=$PATH:$SYBASE/bin
export SYBASE PATH

2. Then, execute the .profile file with the command:

. /.profile

3. Run the following command from the /usr/lpp/djx_02_01_01/lib directory
to create the Data Access Module using Sybase DB-Library:

make -f djxlink.makefile dblib
Chapter 6. Data conversion 107

You will see the following warning messages, which can be ignored:

If you want to use the Client-Library, execute the following command:

make -f djxlink.makefile ctlib

Configuration of Sybase connection (DB-Library)
1. Login as djinst and add the following lines in his .profile file

(/home/djinst/.profile):

SYBASE=/usr/sybase
SYBASE_OCS=OCS-12_0
PATH=$PATH:$SYBASE/bin
export SYBASE SYBASE_OCS PATH

2. Run this .profile file again, as follows:

. /home/djinst/.profile

Where /home/djinst is the djinst home directory.

Before configuring DataJoiner to connect to the Sybase databases, you need
to put the interfaces file on /home/djinst/sqllib directory, where /home/djinst

is the djinst home directory. The interfaces file entry define how Sybase
servers and clients find and communicate with each other on the network.

If you have installed DataJoiner on your Sybase machine as our project
scenario, just copy /usr/sybase/interfaces to /home/djinst/sqllib directory, or
create a link by executing the following command:

ln -s /usr/sybase/interfaces /home/djinst/sqllib

[root@ununbium:/usr/lpp/djx_02_01_01/lib]make -f djxlink.makefile dblib
ld -o dblib -e _no_start -bE:sybase.exp -bI:libdb2e.exp -bM:SRE -K

-L/usr/sybase/OCS-12_0/lib -lc -lsybdb libsybase.a libdjexits.a
ld: 0711-327 WARNING: Entry point not found: _no_start
ld: 0711-319 WARNING: Exported symbol not defined: remoteLockEP
ld: 0711-319 WARNING: Exported symbol not defined: xaOpenEP
ld: 0711-319 WARNING: Exported symbol not defined: xaCloseEP
ld: 0711-319 WARNING: Exported symbol not defined: xaStartEP
ld: 0711-319 WARNING: Exported symbol not defined: xaEndEP
ld: 0711-319 WARNING: Exported symbol not defined: xaPrepareEP
ld: 0711-319 WARNING: Exported symbol not defined: xaCommitEP
ld: 0711-319 WARNING: Exported symbol not defined: xaRollbackEP
ld: 0711-319 WARNING: Exported symbol not defined: createServerEP
108 DB2 UDB V7.1 Porting Guide

If your DataJoiner system is different from the Sybase system, you have to
configure the Sybase Open Client to reach the Sybase database from the
DataJoiner system. What you need to do is add a server entry to the
/usr/sybase/interface file for the Sybase Open Client on your DataJoiner
system using the dsedit tool or a text editor as the following example:

ununbium
master tcp ether ununbium 4100
query tcp ether ununbium 4100

In the example above, ununbium is the host name of the Sybase server
system, and 4100 is the port number used to communicate with the Sybase
server. Once you have modified the interfaces file, copy it to the
/home/djinst/sqllib directory, or create a link referring the
/usr/sybase/interfaces file.

You can test the connection between the Sybase Open Client and the Sybase
Adaptive Server by executing the following command:

isql -Sununbium -Usa -Ppswd

In the example above, ununbium is the server name, sa is the login name, and
pswd is its password.

Refer to the Sybase documentation Installation Guide Sybase Adaptive
Server Enterprise, Document ID:35892-01-1200-01, for the information on
the Sybase Open Client configuration.

Configuration of DataJoiner mappings and nicknames
Now, you can create the server mapping for your Sybase database.

First you need to connect to the DataJoiner database (with djinst user, from
an AIX shell), as follows:

db2 connect to djdb

Then, you run the CREATE SERVER MAPPING statement with the following
command:

db2 create server mapping from <SERVER NAME> to node <NODE NAME> \
database <SOURCE NAME> type <DATABASE SERVER TYPE> \
version <VERSION NUMBER> protocol \"<DAM>\"
Chapter 6. Data conversion 109

Where:

• SERVER NAME is a unique name of your choice (sybasedb, in our case).

• NODE NAME is the server name used in interfaces file (ununbium, in our case).

• SOURCE NAME is the source Sybase database name (test1, in our case).

• DATABASE SERVER TYPE is sybase.

• VERSION NUMBER is the version of your Sybase database (12.0, in our case).

• DAM is the data access module you are using (dblib, in our case).

In our environment, here is the command we used:

db2 create server mapping from sybasedb to node \"ununbium\" \
database \"test1\” type sybase version 12.0 protocol \"dblib\”

Note that the node name, database name, data access module name are
enclosed in double quotes because they are required to preserve
case-sensitivity.

With the following command, create the user mapping for the Sybase
connection:

db2 create user mapping from djinst to server sybasedb \
authid user01 password user01

Where:

• djinst is the local user.

• sybasedb is the server mapping previously created.

• user01 is the source Sybase database user.

• user01 is his password.

At the end, a local nickname for a remote Sybase table can be created with
the following command:

create nickname <NICKNAME> for <SERVERNAME.REMOTEUSER.TABLE>

In our case, this command would be:

create nickname table1 for sybasedb.dbo.table1

You can test the connection by selecting from the table1 nickname, as
follows:

db2 "select * from table1"
110 DB2 UDB V7.1 Porting Guide

Column and index length limits
When a nickname is created for a table, DataJoiner stores the names of the
table’s or view’s columns in the catalog. Since DataJoiner databases are at
the version 2.1 level, the maximum allowable length of column names is
18 characters. If a nickname is being created for a Sybase table that has
columns whose name exceeds this length, DataJoiner truncates them to
18 characters.

The maximum allowable length of DB2 index names is also 18 characters. If a
nickname is being created for a table that has an index whose name exceeds
this length, the entire name is not cataloged. Rather, DB2 truncates it to 18
characters.

If the truncated version of column name is not unique within the table, or if the
truncated version of the index name is not unique among the other names of
indexes that belong to the same table, DB2 UDB will attempt to make it
unique by a further modification. See the CREATE NICKNAME statement’s page of
the DB2 UDB SQL Reference, Volume 2, SC09-2975 for detailed information
on how this is done.

If you export data into an IXF file using a nickname that has truncated
columns, preserved column names in the IXF file will be also truncated.
Therefore, the target table created from the IXF file using the CREATE option of
the IMPORT utility will have truncated column names. If a source Sybase
table has columns whose name length is greater than 18 characters, you
should create the target table in the DB2 database manually to preserve the
original column names in the source tables, and then import data using the
INSERT option of the IMPORT utility (or using the LOAD utility).

The same is true for index names. If a source Sybase table has an index
whose name length is greater than 18 characters and you want to preserve
the index name in the target DB2 database, you should create the target table
and index in the DB2 database manually, and then import data using the
INSERT option of the IMPORT utility (or using the LOAD utility).

6.2.3 Exporting tables using DataJoiner
As we explained in 6.2.2, “Installing and configuring DataJoiner for AIX” on
page 105, in our DataJoiner database we have created a set of nicknames for
the source Sybase tables. You are now ready to export Sybase tables into IXF
files using the EXPORT utility.
Chapter 6. Data conversion 111

First you need to connect to the DataJoiner database (with djinst user,
from an AIX shell), as follows:

db2 connect to djdb

Then execute the following command for each nickname:

db2 export to <output file> of ixf messages <message file> \
select * from <NICKNAME>

In our case, for example, this would be:

db2 export to table1.dat of ixf messages table1.msg \
select * from table1

By executing the EXPORT utility for each nickname, you can obtain a set of
IXF files including unloaded data, table definitions, and index definitions.

The IXF files include not only unloaded data, but also table structures such as
column name, data type, and primary key name. If a source Sybase table has
indexes, the exported IXF file from the table has the definition of those
indexes as well.

6.2.4 Importing tables from IXF files
Once you have exported all Sybase source tables into IXF files, you can
create tables in the target DB2 database and load data using the Import
utility.

First you need to connect to the target DB2 database (with db2inst1 user in
our case), as follows:

db2 connect to test1

You should execute the following command for each exported IXF file:

db2 import from <exported IXF file> of ixf messages <message file> \
create into <target table>

In our case, for example, this would be:

db2 import from table1.dat of ixf messages table1.msg \
create into table1

The EXPORT utility truncates the LONG field to 32700 bytes.

Note
112 DB2 UDB V7.1 Porting Guide

6.2.5 Alter tables
As we have already stated, IXF files cannot preserve all attributes of the
source Sybase tables. For example, referential constraints and foreign key
definitions. Although our Sybase tables did not have any constraints and we did
not have to perform this step in our project, you will probably need to execute
ALTER TABLE statements to set some attributes that are not preserved by IXF files.
The following example is adding a referential constraint:

alter table table1 add constraint const1 foreign key (colb)
references parenttable (cola) on delete cascade on update no action

As we discussed in 5.8, “Create indexes” on page 81, a Sybase table may
have the same name indexes as the other tables, whereas each index
name is unique within a DB2 database. Therefore, when you use the
Import utility to create a DB2 table, you may receive error messages such
as the following, and cannot convert indexes:

SQL0601N The name of the object to be created is identical to the
existing name “DJINST.INDEX1” of type “INDEX”. SQLSTATE=-42710

SQL3189N The previous message refers to index “DJINST.INDEX1” with
columns “+COLA+COLB+COLC”.

The error SQL0601N indicates that the target database already has the
index named DJINST.INDEX1 and DB2 does not allow to use the same name.
In this case, you need to create the index manually using a different name.
The message string accompanied with SQL3189N has the index key
column information.

Note
Chapter 6. Data conversion 113

114 DB2 UDB V7.1 Porting Guide

Chapter 7. Application conversion

In this chapter, we discuss the application conversion from a Sybase
environment to a DB2 UDB environment. We cover the following topics:

• SQL statements
• Transaction
• Built-in functions
• Declared temporary tables
• Save points
• Global variables
• Stored procedures
• Embedded SQL programs
• Client-Library programs

7.1 SQL statement comparison

This section compares the SQL statements of Sybase to that of DB2 UDB
Version 7.1. Though many statements are alike, each has its own extensions
and variations. We will look at only those statements that Sybase supports in
their Transact-SQL (T-SQL). T-SQL supplied by Sybase with the Sybase
Adaptive Server is an extension to the SQL language. Our primary focus will
be on the insert, delete, update, and select statements.

7.1.1 Sybase naming conventions
First we will discuss the naming conventions for Sybase database tables. The
format for the fully qualified table name is:

[database].[owner].table_name

Where:

• database is the name of the database. A query can join more than one
table in different databases or in the same database.

• owner is the table owner. This will be the user-id of the person who created
the table. You can also use the character string dbo to indicate database
owner.

• table_name is the name of the table.

For DB2 UDB the table name can be qualified with the schema name as in:

schema.table_name

• schema is a grouping of logical database objects
© Copyright IBM Corp. 2000 115

• table_name is the name of the table

DB2 UDB can also join tables in other databases using the Relational
Connect feature. Relational Connect is a very powerful feature which also
allows native read access to other DBMS databases.

For the sake of clarity, we will use the phrase table_name from this point
forward to indicate the fully qualified name of the table.

Access to the server and the database is different between Sybase and DB2.
To access a server and database within Sybase, execute the following from
an operating system command line:

isql -Uuser -Ppswd -Sserver
use database_name
go
select

This set of commands is executed from a UNIX command line. The isql

command is the utility to interface with the Sybase server and the user,
password and server information must be supplied. To connect to a database,
you should issue the use database_name command. You can then begin to use
the T-SQL statements.

To access an instance and/or database in DB2 UDB:

connect to database user user_id using pswd
select

This will connect you to the database named, and you must supply the user
name. If using is omitted, you will be prompted for your password.

7.1.2 Insert statement
The basic format for the T-SQL insert statement is:

insert [into] table_name (column list)
{values(expression1, expression2, ...)}
|{ select statement}

Where:

• into for T-SQL is optional, required for DB2 UDB.

• table_name is the table or view name to insert into.

• values to be inserted can either be a list of columns and their
corresponding values, or just a list of values if a value is supplied for all
columns which do not allow null values.
116 DB2 UDB V7.1 Porting Guide

• The select statement can be specified to insert some or all columns from
another table.

The basic format for the DB2 insert statement is:

insert into table_name (column list)
{values(expression1, expression2, ...)}
|{ select statement}

Where:

• into is required for DB2 UDB.

• table_name is the table or view name to insert into.

• values to be inserted can either be a list of columns and their
corresponding values, or just a list of values if a value is supplied for all
columns which do not allow null values.

T-SQL and DB2 differences
• DB2 requires the word into and with T-SQL it is optional.

• Identity columns are handled differently:

- DB2 will accept a value for an identity column if the column definition is
generated by default. If the column is generated always, an error will be
returned. Generated always is the recommendation when converting
from Sybase.

- T-SQL will not accept a value for an identity column except under one
special circumstance. The table owner, database owner or the system
administrator can execute set identity_insert on and insert a value.
When identity_insert is on, all inserts to tables with identity columns
must specify a value for the identity column(s).

• Keep in mind the default column definition differences between Sybase
and DB2 UDB. Sybase does not allow null values by default; DB2 allows
null values by default.

• T-SQL does not allow inserts on join views created with check option

specified in the view, whereas DB2 will.

• T-SQL and DB2 UDB allow an optional select from clause to allow the user
to insert values from other tables.

• For T-SQL when chained mode is set on and no transaction is active, the
insert begins a transaction, and you must either commit or rollback the
transaction.
Chapter 7. Application conversion 117

7.1.3 Delete statement
The basic format for the T-SQL delete statement is:

delete[from] tablename
{where search_condition }

Where:

• from for T-SQL is optional, required by DB2 UDB.

• tablename is the table or view name to delete from.

• where search_condition allows the user to delete rows which meet specific
conditions.

The basic format for the DB2 delete statement is:

delete from tablename
{where search_condition }

Where:

• from is required by DB2 UDB.

• tablename is the table or view name to delete from.

• where search_condition allows the user to delete rows which meet specific
conditions.

Differences between T-SQL and DB2 UDB include:

• T-SQL does not allow deletes from a view that joins tables, even though
the tables may individually allow deletes.

• T-SQL treats from as an option, DB2 requires that from be specified.

• T-SQL allows joined tables in the delete command as follows:

delete table02 from table02 t2, table03 t3 where t2.col1=t3.col1

This example allows data to be deleted from table02 with matching data in
table03 on col1.

• The same result could be attained in DB2 UDB by coding this as a
subquery:

delete from table02 where col1 = (select t2.col1 from table02 t2,
table03 t3 where t2.col1 = t3.col2);

• For T-SQL when chained mode is set on and no transaction is active, the
delete begins a transaction and you must either commit or rollback the
transaction.
118 DB2 UDB V7.1 Porting Guide

7.1.4 Update statement
The basic format for the T-SQL update statement is:

update tablename
set col1_name = expression1|NULL | select statement
{where search_condition }

Where:

• tablename is the table or view name to update.

• set indicates the column(s) we want to change and the new value.

• select indicates that you can update a column or columns with values from
other tables.

• where search_condition allows the user to update only rows which meet
specific conditions.

The basic format for the DB2 update statement is:

update tablename
set col1_name = expression1|NULL | DEFAULT | select statement
{where search_condition }

Where:

• tablename is the table or view name to update.

• set indicates the column(s) we want to change and the new value.

• select indicates that you can update a column or columns with values from
other tables.

• where search_condition allows the user to update only rows which meet
specific conditions.

Differences between T-SQL and DB2 UDB include:

• In DB2 you can specify the default value to be used based on how the
corresponding column is defined in the table. T-SQL does not allow you to
specify this option.

• For T-SQL when chained mode is set on and no transaction is active, the
update begins a transaction and you must either commit or rollback the
transaction.

7.1.5 Select statement syntax
The format for the T-SQL select statement is:

select [all | distinct | select _list
Chapter 7. Application conversion 119

[into tablename]|
[from tablename
[holdlock | noholdlock] [shared],

[database].[owner].tablename2
where search_condition
group by

having

order by

compute

for {read only | update...... }
for browse

This is a list of the major functions and we will address each one separately:

• all, distinct, select_list works as in DB2 UDB. The all option is the
default for both T-SQL and DB2 UDB.

• into is a T-SQL option to create a duplicate table or a subset based on the
where clause. DB2 UDB supports the into option, but it works totally
differently. For the DB2 UDB the select into produces a table consisting of
at most one row with that row having the values of host variables and must
be imbedded in an application program.

The same results as the into option of the Sybase select statement can be
attained with DB2 UDB as follows:

create table02 like table01;
insert into table02 select * from table01;

This will create the table and then it can be populated using the insert. If
you wish to create a subset you can add a where clause to the select
statement to select only those rows you want.

You can also create a table with only selected columns as follows:

create table table02 as
(select col1, col2 from table01)
definition only;

This will create a new table table02 using the columns col1 and col2 from
table01. The option DEFINITION ONLY would not insert the data.

• tablename is the table or view name to retrieve data.

• where search_condition search criteria to meet specific conditions.

• [holdlock | noholdlock] [shared] indicate the optional locking strategy to
use. Shared can be used only in a select statement within a cursor. The
holdlock makes a shared lock on the specified table or view and holds for
the duration of the transaction. For DB2 UDB the same effect would be to
set the isolation level to ‘RR’, Repeatable Read.
120 DB2 UDB V7.1 Porting Guide

• tablename2 indicates second or subsequent tables.

• group by works the same on both platforms.

• having is an option in both T-SQL and DB2 UDB that allows conditions to
be set for the group by clause.

• order by is the same in both platforms.

• compute is a T-SQL only feature that allows creation of additional rows with
summary values, when used with the row aggregate functions (sum, avg,
min, count, max). DB2 UDB provides the ROLLUP which produces the same
results but slightly different presentation.

• read only, update or for browse allow cursors to determine the type of
locking and with DB2 UDB this will be done by using the read-only and for
update clause on the select statement to accomplish the same results.

7.1.6 Select statement differences
In addition to the basic select statement, there are some other options that
need to be discussed because of major differences in syntax.

7.1.6.1 Column headings
To change the name of a heading within T-SQL there are three methods:

1. select ‘name’ = col01

2. select col01 ‘name’

3. select col01 as ‘name’

DB2 UDB supports only the third format.

7.1.6.2 Local variables
T-SQL allows you to declare local variables within a transaction and assign
the variable a value. This would look like the following:

declare @department char(4)
select @department = ‘x104’
select name, address from employee_db where dept = @department

The above SQL code can be in a stored procedure, embedded SQL or SQL
entered within the Sybase server interactively. They can be used as counters
or to control while loops or if-else code.

With DB2 UDB, this would need to be accomplished within a stored
procedure.
Chapter 7. Application conversion 121

7.1.6.3 Convert clause and casting
T-SQL offers a built-in function convert to allow conversion from one data type
to another, including date formats. This would be accomplished by, for
example:

select convert(char(8), getdate(),1)

This would return the current date in the format mm/dd/yy.

The convert can be used also to convert one data type to another, for
example, to print you might want to convert smallint data type to char.

select convert(char(4), col1) from table01

The above would convert the contents of col1 into a character format

For DB2 UDB you would need to use a casting function to convert the data.

values (CAST (current timestamp as date))

select CAST (col1 as char) from table01

The first examples will return the date in mm-dd-yyyy format. The second
example casts the column col1 into character format. DB2 also provides
casting functions using the same name as the data type to which the data is
converted. The following statements will return the same results as the
examples shown above:

values (date(current timestamp))

select char(col1) from table01

7.1.6.4 Wild card characters
Both T-SQL and DB2 UDB support wild cards in the compare strings. The
support is the same but T-SQL supports more characters (Table 16).

Table 16. Wild card character comparisons

The carot ‘^’ and brackets ‘[]’ are not supported by DB2 UDB, so these will
have to be handled in other ways.

T-SQL DB2 UDB Meaning

% % Used to represent a string of 0 or more characters

_ _ Used to represent a single character

^ n/a Negative wildcard. Opposite of %

[] n/a Used to specify a range of characters. For example,
[a-z] would be any character of a through z
122 DB2 UDB V7.1 Porting Guide

For the conversion, the carot could be changed to use NOT LIKE ‘%abc%’

instead of LIKE ‘^abc^’.

Brackets could be handled with a substring function. Sybase example

select name from table01 where name like ‘[A-C]%’

This would return all rows where the first character is A, B, or C.

For DB2 UDB we could code this:

select name from table01 where substr(name, 1, 1) between ‘A’ and ‘C’

For both T-SQL and DB2 UDB, the wild card characters are used in
conjunction with the like clause.

7.1.6.5 Join
The join works basically the same in both T-SQL and DB2 UDB but have very
different syntax. Beginning with SYBASE ASE release 12.0, there is support
for the DB2 UDB format as well as the alternate format. Prior to release 12.0
the * indicated the outer join operator.

T-SQL supports joining multiple tables using such join operators as =, >, <, <=
plus others. These work in the same manner as DB2 UDB.

For outer joins, T-SQL supports a different format with the * indicating the
outer join operation.

Inner joins
The inner join works the same for both T-SQL and DB2 UDB with a syntax
exception. T-SQL does an implicit join when two tables are named in the
select statement. DB2 UDB also does the implicit inner join, but INNER JOIN

can optionally be specified .

Outer joins
The T-SQL syntax for left outer joins is as follows:

select t1.col1, t1.col2, t5.col1 from table01 t1, table05 t5

where t1.col1 *= t5.col1

The DB2 UDB syntax will require that you specify LEFT OUTER JOIN in the
select statement to accomplish the same results.

select t1.col1, t1.col2 t1.col5 from table01

left outer join table05 t5 on t1.col1 = t5.col1
Chapter 7. Application conversion 123

Right outer joins would be:

select t1.col1, t1.col2, t5.col1 from table01 t1, table05 t5

where t1.col1 =* t5.col1

Again, DB2 UDB would require RIGHT OUTER JOIN to obtain the same results.

select t1.col1, t1.col2 t1.col5 from table01

right outer join table05 t5 on t1.col1 = t5.col1

7.1.6.6 Union
The UNION operator works the same on both platforms.

7.2 Transaction comparison

This section will be a brief comparison of the transaction model and the
supported isolation level in Sybase and DB2 UDB.

7.2.1 Transaction model
In Sybase, a transaction is defined by enclosing SQL statements and/or
system procedures within the phrases BEGIN TRANSATION, SAVE TRANSACTION

(savepoint), COMMIT, and ROLLBACK. Sybase has two modes of transactions:
unchained mode and chained mode. In T-SQL, you can change the
transaction mode with the SET CHAINED ON or the SET CHAINED OFF command.
The default mode is unchained mode in T-SQL. In unchained mode, you need
to issue the explicit BEGIN TRANSACTION statement paired with the COMMIT

TRANSACTION or ROLLBACK TRANSACTION statement to complete a transaction. If
you do not describe the BEGIN TRANSACTION statement, each statement
executed is implicitly committed. In chained mode, Sybase starts a
transaction implicitly before the following statements: DELETE, INSERT, OPEN,
FETCH, SELECT, and UPDATE. You need to issue the COMMIT TRANSACTION or
ROLLBACK statement to close the transaction. The default mode in embedded
SQL programs is chained mode.

In DB2 UDB, explicit transaction is not required, and implicit transaction is the
only mode available.

Between Sybase and DB2 UDB, the transaction models are different. Sybase
supports nested transactions, while DB2 UDB does not.
124 DB2 UDB V7.1 Porting Guide

See the Sybase example shown in Figure 25. In this example, a program
starts a transaction and then calls a stored procedure. The called stored
procedure also starts a transaction. In this case, only the transaction started
in the stored procedure will be committed if you issue a COMMIT TRAN command
in the stored procedure. As we will discuss in 7.5, “Save point” on page 147,
you can also set a save point and rollback to the save point. The ROLLBACK

statement without the save point name rolls back all the transactions,
including the one started in the caller program.

Figure 25. Nested transactions in Sybase

See the DB2 example shown in Figure 26. Since DB2 does not support
nested transactions, if you issue the COMMIT or ROLLBACK statement in the called
stored procedure like the Sybase example, all the changes done both in the
caller program and the called stored procedure will be committed or rolled
back.

Figure 26. Transactions in DB2 UDB

Caller Program
BEGIN TRAN
some SQLs
............
exec proc1

Stored procedure : proc1
BEGIN TRAN
SAVE TRAN S1............

COMMIT TRAN
ROLLBACK TRAN
ROLLBACK TRAN S1

if (ERROR)
...... SQLs

COMMIT TRAN

Caller Program
start implicit transaction
some SQLs
............
call proc1

Stored procedure : proc1
SAVEPOINT S1

............

.............
ROLLBACK TO SAVEPOINT S1

if (ERROR)
...... SQLs

COMMIT COMMIT or ROLLBACK
Chapter 7. Application conversion 125

7.2.2 Transaction isolation level
This section offers a brief comparison of the transaction isolation levels
supported by Sybase and DB2. Table 17 lists the isolation levels supported by
each platform.

Table 17. Transaction isolation levels

Sybase allows the isolation level to be changed at any time except within a
transaction. The holdlock option on the select statement also causes the
isolation level 2 to be used.

Setting the isolation level
Setting the isolation level in Sybase can be done by the SET TRANSACTION

ISOLATION LEVEL command as follows:

set transaction isolation level 3

This example uses the set command to set the isolation level to 3

In DB2 UDB, the isolation level can be set only at specific times, based on the
method with which it is set.

For embedded SQL: the isolation level is determined when the PREP or BIND
command is executed:

PREP program1.sqc ISOLATION UR
BIND program1.bnd ISOLATION UR

These examples set the isolation level to Uncommitted Read which will allow
uncommitted reads.

When using the Command Line Processor (CLP) the isolation level is set or
changed by the CHANGE ISOLATION command:

CHANGE ISOLATION rr

This example sets the isolation level to Repeatable Read.

Sybase DB2 UDB Description

0 UR Uncommitted Reads

1 CS Cursor Stability, prevents uncommitted or ‘dirty’ reads

2 RS Read Stability prevents rows from a transaction from being
read by another transaction until committed

3 RR Repeatable Read prevents phantom reads in addition to
providing Read Stability
126 DB2 UDB V7.1 Porting Guide

For DB2 Call Level Interface (DB2 CLI), you can use the SQLSetConnectAttr

function with the SQL_ATTR_TXN_ISOLATION attribute at run time. This will set the
transaction isolation level for the current connection referenced by the
connection handle. The accepted values are:

SQL_TXN_READ_UNCOMMITTED - Uncommitted Read
SQL_TXN_READ_COMMITTED - Cursor Stability
SQL_TXN_REPEATABLE_READ - Read Stability
SQL_TXN_SERIALIZABLE - Repeatable Read

You can also use the TXNISOLATION keyword of the DB2 CLI configuration file
(db2cli.ini) as follows:

TXNISOLATION=1

This would set the isolation level to Uncommitted Read (1). Other values
allowed are 2=Cursor Stability, 4=Read Stability and 8=Repeatable Read.

7.3 Function comparison

This section discusses the functions available in Sybase and how they map to
DB2 UDB functions. This section is divided into the following topics:

• Sybase functions that map to DB2 UDB

• Sybase functions that have no DB2 UDB equivalent

• Additional DB2 UDB Version 7.1 functions

For Sybase functions that have no DB2 UDB equivalent, we introduce some
user defined functions with which you can implement the same functionality in
DB2 UDB.

Here, we provide a general discussion of functions in Sybase and DB2 UDB.
“Stored procedure conversion” on page 168 has examples with converted
functions in our customer application.

7.3.1 Compatible functions
This section discusses compatible functions between Sybase and DB2 UDB.
Chapter 7. Application conversion 127

7.3.1.1 Functions that have the same names
Table 18 is a listing of the Sybase functions that map to DB2 UDB functions.
These functions are equivalent in name and functionality.

Table 18. Functions that map from Sybase to DB2 with same names

Sybase DB2 UDB

ABS ABS or ABSVAL

ACOS ACOS

ASCII ASCII

ASIN ASIN

ATAN ATAN

AVG AVG

CEILING CEILING or CEIL

COALESCE or ISNULL COALESCE or VALUE

COS COS

COT COT

COUNT COUNT

DEGREES DEGREES

DIFFERENCE DIFFERENCE

EXP EXP

FLOOR FLOOR

LOG LOG

LOG10 LOG10

LOWER LOWER or LCASE

LTRIM LTRIM

MAX MAX

MIN MIN

NULLIF NULLIF

POWER POWER

RADIANS RADIANS
128 DB2 UDB V7.1 Porting Guide

7.3.1.2 Functions that have different names
Table 19 is also a listing of Sybase functions that map to DB2 UDB functions.
These functions have different names, but are equivalent in functionality.

Table 19. Functions that map from Sybase to DB2 UDB with different names

RAND RAND

RIGHT RIGHT

ROUND ROUND

RTRIM RTRIM

SIGN SIGN

SIN SIN

SOUNDEX SOUNDEX

SPACE SPACE

SQRT SQRT

SUM SUM

TAN TAN

UPPER UPPER or UCASE

Sybase DB2 UDB

ATN2 ATAN2

CHAR CHR

CHARINDEX(...,...) LOCATE or POSSTR

CHAR_LENGTH LENGTH

CONVERT(CHAR,...) CHAR

CONVERT(CHAR(12),datetime,style) CHAR(DATE(timestamp),style)1

CONVERT(DECIMAL(...,...),...) DECIMAL or DEC

CONVERT(FLOAT(2),...) DOUBLE_PRECISION,
DOUBLE or FLOAT

CONVERT(IMAGE,...) BLOB

CONVERT(INT,...) INT or INTEGER

Sybase DB2 UDB
Chapter 7. Application conversion 129

CONVERT(SMALLINT) SMALLINT

CONVERT(TEXT,..) CLOB

CONVERT(VARCHAR,...) VARCHAR

DATA_LENGTH LENGTH2

DATEDIFF TIMESTAMPDIFF3

DATENAME(MONTH,...) MONTHNAME

DATENAME(WEEKDAY,...) DAYNAME

DATEPART(DAY,...) DAY

DATEPART(DAYOFYEAR,...) DAYOFYEAR

DATEPART(HOUR,...) HOUR

DATEPART(MILLISECOND,...) MICROSECOND() * 1000

DATEPART(MINUTE,...) MINUTE

DATEPART(MONTH,...) MONTH

DATEPART(QUARTER,...) QUARTER

DATEPART(SECOND,...) SECOND

DATEPART(WEEKDAY,...) DAYOFWEEK

DATEPART(WEEK,...) WEEK

DATEPART(YEAR,...) YEAR

INTTOHEX HEX

LOG(...) LN

REPLICATE REPEAT

STUFF INSERT4

STR CHAR(DECIMAL(...))

SUBSTRING SUBSTR

+ CONCAT or ||

% MOD

Sybase DB2 UDB
130 DB2 UDB V7.1 Porting Guide

1. In Sybase, you can use the CONVERT function to convert DATETIME or
SMALLDATETIME data to a character type and specify the display format.
Possible Sybase date formats are shown in Table 20.

Table 20. Possible Sybase date formats

In DB2, you can use the CHAR function to convert date type data to a
character type and specify the display format. Possible DB2 date formats
are shown in Table 21.

Table 21. Possible DB2 date formats

Style number
without century
(yy)

Style number
with century
(yyyy)

Date format

N/A 0 or 100 mon dd yyyy hh:miAM (or PM)

1 101 mm/dd/yy

2 102 yy.mm.dd

3 103 dd/mm/yy

4 104 dd.mm.yy

5 105 dd-mm-yy

6 106 dd mon yy

7 107 mon dd, yy

8 108 hh:mm:ss

N/A 9 or 109 mon dd yyyy hh:mi:ss:mmmAM (or PM)

10 110 mm-dd-yy

11 111 yy/mm/dd

12 112 yymmdd

Format name Abbreviation Date format

International
Standards
Organization

ISO yyyy-mm-dd

IBM USA standard USA mm/dd/yyyy

IBM European
standard

EUR dd.mm.yyyy
Chapter 7. Application conversion 131

The following example shows how to use the CONVERT function in Sybase:

1> SELECT CONVERT (CHAR(12),GETDATE(),101)
2> GO

10/01/2000

And the following example shows how use the CHAR function in DB2:

db2 “VALUES (CHAR (DATE(CURRENT TIMESTAMP),USA)
1

10/01/2000

2. The difference between DATA_LENGTH in Sybase and LENGTH in DB2 UDB

In Sybase, DATA_LENGTH returns the number of bytes.

In DB2 UDB, LENGTH also returns the number of bytes, except for a graphic
string. The length of a graphic string is the number of DBCS characters.

3. Differences between DATEDIFF and TIMESTAMPDIFF include:

These functions return the time difference between the two variables that
mean date and time. Sybase has DATETIME data type that includes date,
time and millisecond. DB2 UDB has TIMESTAMP data type that includes
date, time and microsecond.

The DATEDIFF function in Sybase and the TIMESTAMPDIFF function in DB2
UDB are similar, but the parameters and the output are different.

The first parameter should be specified as shown in Table 22.

Table 22. First parameter for DATEDIFF and TIMESTAMPDIFF

Japanese
Industrial Standard

JIS yyyy-mm-dd

Installation-defined LOCAL Any installation defined form

Sybase DB2 UDB

millisecond 1 *

second 2

minute 4

hour 8

Format name Abbreviation Date format
132 DB2 UDB V7.1 Porting Guide

* The value 1 means microsecond, and you need to multiply the result
of TIMESTAMPFIFF function by 1000.

The second parameter for DB2 UDB should be specified as shown here:

TIMESTAMPDIFF(16,CHAR(timestamp1 - timestamp2))

Also the output of TIMESTAMPDIFF is not exactly the same as in Sybase,
because the following assumptions are used in estimating differences in
timestamp in DB2 UDB:

- 365 days in a year

- 30 days in a month

- 24 hours in a day

- 60 minutes in an hour

- 60 seconds in a minute

For example, in DB2 UDB, if the number of days is requested for a
difference in timestamps ‘1997-03-01-00.00.00' and
‘1997-02-01-00.00.00', the result is 30 as shown here.

In DB2 UDB:

db2 “VALUES(TIMESTAMPDIFF(16,CHAR(TIMESTAMP('1997-03-01-00.00.00')-
TIMESTAMP('1997-02-01-00.00.00'))))”
1

30

Note that 16 is specified for the first parameter.

In Sybase:

day
dayofyear

16

week
weekday
colweekofyear
coldayofweek

32

month 64

quarter 128

year
calyearofweek

256

Sybase DB2 UDB
Chapter 7. Application conversion 133

1> SELECT DATEDIFF(DAY,"1997-02-01 01:00:00","1997-03-01 01:00:00")
2> GO

28

Note: You can use a VALUES function to view values in DB2 UDB. It is
equivalent to the SELECT statement without FROM clause in Sybase.

4. Difference in usage between STUFF and INSERT:

See the examples shown in Table 23.

Table 23. Examples of conversion from STUFF to INSERT

Both the functions return a string where the argument3 bytes have been
deleted from the argument1 beginning at the argument2 and where the
argument4 has been inserted into the argument1 beginning at the
argument2.

Both functions have the same functionality with small differences in the
usage.

For the fourth argument, you cannot use the string ‘NULL’ to specify a null
value in the INSERT function. You should use two single quotations without
a space (‘’) to specify a null value as shown in the case 2 of Table 23. As
shown in the case 3, two single quotations without a space (‘’) means a
space character in the STUFF function. In INSERT function, you should use
two single quotations with a space (‘ ’) to specify a space character.

Creating user defined functions
If your application has many function calls whose names are different, but the
functionality is the same between Sybase and DB2 UDB, changing all of them
into the DB2 function name would be a considerable job. In this case, you
may want to create source user defined functions in the DB2 database using
the Sybase function name. By doing this, you can perform the application
program conversion without changing the function calls one by one.

For example, if your Sybase application calls the ATN2 function, then the
converted DB2 application should call the ATAN2 function, or you can leave

Sybase DB2 UDB RESULT

Case 1 STUFF('abc',2,3,'xyz') INSERT('abc',2,3,'xyz') axyz

Case 2 STUFF('abcdef',2,3,null) INSERT('abcdef',2,3,'') aef

Case 3 STUFF('abcdef',2,3,'') INSERT('abcdef',2,3,' ') a ef
134 DB2 UDB V7.1 Porting Guide

this function call if you create the user defined function ATN2 using the existing
ATAN2 function. Calling the ATN2 function will invoke the ATAN2 function. Here is
an example to create a user defined function ATN2:

CREATE FUNCTION ATN2 (DOUBLE,DOUBLE) RETURNS DOUBLE SOURCE SYSFUN.ATAN2

7.3.2 Sybase functions that have no DB2 UDB equivalent
There are functions in Sybase that are not in DB2 UDB.

7.3.2.1 Functions that can be implemented with SQL UDF
DB2 UDB V7.1 supports user-defined SQL functions (SQL UDF). They are
much easier to create than legacy user-defined functions, since you do not
need to program the functions using external programming language. Some
of Sybase functions can be implemented using SQL UDF functions in DB2
UDB. Here we show examples for the following Sybase built-in functions:

• DATEADD

• COL_LENGTH

• PI

DATEADD function
The DATEADD function returns the DATETIME data type produced by adding a
given number of years, quarters, hours, or other DATETIME parts to the
specified DATETIME type data. Let us say you have a table tablea with a
DATETIME type column cola. In Sybase, you can use the DATEADD function as
follows:

SELECT DATEADD(DAY,5,cola) FROM tablea

This statement will add 5 days to the cola column and can be converted as
following:

SELECT cola + 5 DAY FROM tablea

Generally SELECT DATEADD (DAY, number, datetime column) can be
converted as SELECT column + number DAY, SELECT DATEADD (MONTH, number,

datetime column) can be converted as SELECT column + number MONTH,and
SELECT DATEADD (YEAR, number, datetime column) can be converted as
SELECT column + number YEAR.

If you do not want to change all the SQL statements using the DATEADD

function in your application, you can create the user defined function DATEADD

featuring the same functionality as the Sybase built-in functin DATEADD and
leave the SQL statements using the DATEADD function. The following example
creates a user defined function DATEADD:
Chapter 7. Application conversion 135

CREATE FUNCTION DATEADD(v_type VARCHAR(11),v_add INTEGER,v_date
TIMESTAMP)

RETURNS TIMESTAMP
LANGUAGE SQL
NO EXTERNAL ACTION
RETURN
CASE UCASE(v_type)

-- 'MILLISECOND' OR 'MS'
WHEN 'MILLISECOND' THEN v_date + INT(v_add*1000) MICROSECOND
WHEN 'MS' THEN v_date + INT(v_add*1000) MICROSECOND

-- 'SECOND' OR 'SS'
WHEN 'SECOND' THEN v_date + v_add SECOND
WHEN 'SS' THEN v_date + v_add SECOND

-- 'MINUTE' OR 'MI'
WHEN 'MINUTE' THEN v_date + v_add MINUTE
WHEN 'MI' THEN v_date + v_add MINUTE

-- 'hour' or 'hh'
WHEN 'HOUR' THEN v_date + v_add HOUR
WHEN 'HH' THEN v_date + v_add HOUR

-- 'DAY' OR 'DD'
WHEN 'DAY' THEN v_date + v_add DAY
WHEN 'DD' THEN v_date + v_add DAY

-- 'week' or 'wk'
WHEN 'WEEK' THEN v_date + INT(v_add*7) DAY
WHEN 'WK' THEN v_date + INT(v_add*7) DAY

-- 'MONTH' OR 'MM'
WHEN 'MONTH' THEN v_date + v_add MONTH
WHEN 'MM' THEN v_date + v_add MONTH

-- 'QUARTER' OR 'QQ'
WHEN 'QUARTER' THEN v_date + INT(v_add*3) MONTH
WHEN 'QQ' THEN v_date + INT(v_add*3) MONTH

-- 'YEAR' OR 'YY'
WHEN 'YEAR' THEN v_date + v_add YEAR
WHEN 'YY' then v_date + v_add YEAR

END

COL_LENGTH function
The following example creates a user defined function featuring the same
functionality as the Sybase COL_LENGTH function:

CREATE FUNCTION COL_LENGTH (V_TABNAME VARCHAR(128),
V_COLNAME VARCHAR(128))

RETURNS INTEGER
LANGUAGE SQL
NO EXTERNAL ACTION
RETURN

SELECT LENGTH
136 DB2 UDB V7.1 Porting Guide

FROM SYSCAT.COLUMNS
WHERE TABSCHEMA=USER
AND TABNAME=V_TABNAME
AND COLNAME=V_COLNAME

This function looks up the system catalog and obtains the length of the
specified column name.

PI function
The PI function simply returns the constant value 3.1415926535897936. The
following example shows the conversion of the PI function to DB2 UDB:

CREATE FUNCTION PI ()
RETURNS DOUBLE
LANGUAGE SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN 3.1415926535897936

7.3.2.2 Functions that can be converted to special registers
The following functions can be converted to the special registers in DB2 UDB:

• USER

• GETDATE

Sybase’s USER function returns the name of the current user. You can use the
USER special register in DB2 UDB to implement the same functionality as the
Sybase’s USER function.

You can use the CURRENT TIMESTAMP special register in DB2 UDB for Sybase’s
GETDATE function.

USER function
The following examples show the use of the USER function in Sybase and the
USER special register in DB2 UDB.

In Sybase:

1> SELECT USER
2> GO

dbo

In DB2 UDB:

DB2 “VALUES(USER)”
1

Chapter 7. Application conversion 137

DB2INST1

GETDATE function
The following examples show the usage of the GETDATE function in Sybase and
the CURRENT TIMESTAMP special register in DB2 UDB.

In Sybase:

1> SELECT GETDATE()
2> GO

Aug 17 2000 2:03PM

In DB2 UDB:

DB2 “VALUES(CURRENT TIMESTAMP)”
1

2000-08-17-14.09.16.751477

7.3.2.3 Functions that depend on the architecture of Sybase
These functions are depending on the architecture of Sybase. They are
related to the object’s id, physical architecture, role, license, and so on.

• COL_NAME
• CURUNRESERVEDPGS
• DATA_PGS
• DB_ID
• DB_NAME
• INDEX_COL
• INDEX_COLORDER
• IS_SEC_SERVICE_ON
• LCT_ADMIN
• LICENSE_ENABLED
• MUT_EXCL_ROLES
• OBJECT_ID
• OBJECT_NAME
• PROC_ROLE
• PTN_DATA_PGS
• RESERVED_PGS
• ROLE_CONTAIN
• ROLE_ID
• ROLE_NAME
• ROWCNT
• SHOW_ROLE
138 DB2 UDB V7.1 Porting Guide

• SHOW_SEC_SERVICES
• SORTKEY
• SUSER_ID
• SUSER_NAME
• USED_PGS
• USER_ID
• USER_NAME
• VALID_USER

7.3.2.4 Functions converted to external functions
For these Sybase built in functions, You should write user defined functions
(UDFs) with external programming language such as C.

• COMPARE
• HEXTOINT
• HOST_ID
• HOST_NAME
• PATINDEX
• REVERSE
• STR
• TEXTPTR
• TEXTVALID
• TSEQUAL
• VALID_NAME

Here are the steps that should be performed:

• Write the UDF

• Compile (and link) the UDF

• Register the UDF using the CREATE FUNCTION statement

See the Application Development Guide, SC09-2949 for the details.

7.3.3 Additional DB2 UDB Version 7.1 functions
There are a number of functions available in DB2 UDB V7.1 that are not in
Sybase. These functions are summarized in Table 24.

Table 24. Functions Available in DB2 UDB V7.1

Function name Description

BIGINT Returns a 64 bit integer representation of a number or
character string in the form of an integer constant.
Chapter 7. Application conversion 139

CORRELATION or CORR Returns the coefficient of correlation of a set of number
pairs.

COUNT_BIG Returns the number of rows or values in a set of rows or
values (column function). Result can be greater than the
maximum value of integer.

COVARIANCE or
COVAR

Returns the covariance of a set of number pairs.

DAYOFWEEK_ISO Returns the day of the week in the argument as an integer
value in the range 1-7, where 1 represents Monday.

DAYS Returns an integer representation of a date.

DBCLOB Casts from source type to DBCLOB, with optional length.

DEREF Returns an instance of the target type of the reference type
argument.

DIGITS Returns the character string representation of a number.

GENERATE_UNIQUE Returns a bit data character string that is unique compared
to any other execution of the same function.

GRAPHIC Cast from source type to GRAPHIC, with optional length.

GROUPING Used with grouping-sets and super-groups to indicate
sub-total rows generated by a grouping set (column
function). The value returned is:
1 The value of the argument in the returned row is a null
value and the row was generated for a grouping set. This
generated row provides a sub-total for a grouping set.
0 otherwise.

HEX Returns the hexadecimal representation of a value.
This function includes the functionality of the INTTOHEX
function that Sybase provides, and also returns character
codes.

JULIAN_DAY Returns an integer value representing the number of days
from January 1, 4712 B.C. (the start of the Julian date
calendar) to the date value specified in the argument.

LEFT Returns a string consisting of the left most argument2
bytes in argument1.

LONG_VARCHAR Returns a long string.

LONG_VARGRAPHIC Casts from source type to LONG_VARGRAPHIC.

Function name Description
140 DB2 UDB V7.1 Porting Guide

MIDNIGHT_SECONDS Returns an integer value in the range 0 to 86 400
representing the number of seconds between midnight and
time value specified in the argument.

REAL Returns the single-precision floating-point representation
of a number.

REGR_AVGX Returns quantities used to compute diagnostic statistics.

REGR_AVGY Returns quantities used to compute diagnostic statistics.

REGR_COUNT Returns the number of non-null number pairs used to fit the
regression line.

REGR_INTERCEPT or
REGR_ICPT

Returns the y-intercept of the regression line.

REGR_R2 Returns the coefficient of determination for the regression.

REGR_SLOPE Returns the slope of the line.

REGR_SXX Returns quantities used to compute diagnostic statistics.

REGR_SXY Returns quantities used to compute diagnostic statistics.

REGR_SYY Returns quantities used to compute diagnostic statistics.

REPLACE Replaces all occurrences of argument2 in argument1 with
argument3.

STDDEV Returns the standard deviation of a set of numbers
(column function).

TABLE_NAME Returns an unqualified name of a table or view based on
the object name given in argument1 and the optional
schema name given in argument2. It is used to resolve
aliases.

TABLE_SCHEMA Returns the schema name portion of the two part table or
view name given by the object name in argument1 and the
optional schema name in argument2. It is used to resolve
aliases.

TIME Returns a time from a value.

TIMESTAMP Returns a timestamp from a value or a pair of values.

Function name Description
Chapter 7. Application conversion 141

For the detailed information such as data types of the input parameters,
see the SQL Reference, SC09-2974.

7.4 Declared temporary tables

Both Sybase and DB2 UDB create temporary tables which are used to place
transient data for sorting rows, processing complex SQLs, and so on. They
are automatically created and dropped by DBMS. User applications cannot
manipulate them directly and these temporary tables do not persist beyond
the current statement.

TIMESTAMP_ISO Returns a timestamp value based on a date, time, or
timestamp argument. If the argument is a date, it inserts
zero for all the time elements. If the argument is a time, it
inserts the value of CURRENT DATE for the date elements
and zero for the fractional time element.

TRANSLATE Returns a string in which one or more characters may have
been translated into other characters.

TRUNC or TRUNCATE Returns argument1 truncated to argument2 places right of
the decimal point. If argument2 is negative, argument1 is
truncated to the absolute value of argument2 places to the
left of the decimal point. (argument2 is effectively the
number of places to move).

TYPE_ID Returns the internal data type identifier of the dynamic data
type of the argument. Note that the result of this function is
not portable across databases.

TYPE_NAME Returns the unqualified name of the dynamic data type of
the argument.

TYPE_SCHEMA Returns the schema name of the dynamic type of the
argument.

VARGRAPHIC Returns a VARGRAPHIC representation of the first
argument. If a second argument is present, it specifies the
length of the result.

VARIANCE or VAR Returns the variance of a set of numbers (column function).

WEEK_ISO Returns the week of the year in of the argument as an
integer value in the range of 1-53. The first day of a week
is Monday. Week 1 is the first week of the year to contain a
Thursday.

Function name Description
142 DB2 UDB V7.1 Porting Guide

Applications can create their own temporary tables to store transient data as
well. These tables are useful to use as intermediate tables to process large
amount of data with complex queries. In this section, we discuss this type of
temporary tables, which users can declare and use in application programs.

7.4.1 Temporary table comparison
Table 25 shows temporary space comparison between Sybase and DB2
UDB.

In Sybase these temporary tables are allocated in the tempdb database
whereas in DB2 UDB, temporary tables for DBMS are allocated in system
temporary table spaces, and user defined temporary tables are allocated in
user temporary table spaces.

Sybase has two types of user defined temporary tables. One type is local
temporary tables and the other type is global temporary tables. Local
temporary tables (created in tempdb) are visible only from the current user who
has created the temporary tables, and persist within the current application’s
connection. If local temporary tables are created in a stored procedure, they
persist within a stored procedure’s execution. The global temporary table has
persistency between connections, and stays in tempdb until restarting of
Sybase server. Sybase logs the changes on temporary tables in the tempdb

database.

Table 25. Temporary space comparison between Sybase and DB2 UDB

Temporary tables in DB2 UDB have the following characteristics:

• Do not exist as an entry in the system catalog tables
• Only used on behalf of a single application
• Changes are not logged
• Uses only minimal locking

Sybase DB2 UDB

Temporary space for
DBMS is implemented
in

tempdb database System temporary table
spaces

User defined temporary
tables are created in

tempdb database User temporary table spaces

User defined temporary
tables

Local temporary tables Declared temporary tables

Global temporary tables N/A
Chapter 7. Application conversion 143

In DB2, you can create a temporary table using the DECLARE GLOBAL TEMPORARY

TABLE statement when you need it as an intermediate table. This type of
temporary tables are called declared temporary tables. A declared temporary
table persists within the current application’s connection and is dropped
automatically at the termination of the connection. During the connection
period, the application can select rows from the declared temporary table,
perform INSERT/UPDATE/DELETE statements without logging, and even drop the
table explicitly. Declared temporary tables can be used from the standard
SQL interfaces such as ODBC, CLI, and static/dynamic SQL.

You can use declared temporary table in DB2 UDB to implement Sybase’s
local temporary table. For a global temporary table in Sybase, you can use a
regular table for the same purpose; however, you need to drop the table
explicitly when you do not need it any longer.

7.4.2 Creating temporary tables
An example of the conversion from a local temporary table in Sybase to a
declared temporary table in DB2 UDB is shown here:

Creating a local temporary table in Sybase
A table whose name start with “#” character is created as a local temporary
table.

• With 1 SQL statement:

SELECT * INTO #temptab FROM tab1 WHERE col01>’C0000’

• With two SQL statements

CREATE #temptab(col01 CHAR(5), col02 CHAR(10))
INSERT * INTO #temptab SELECT * FROM TAB1 WHERE col01>’C0000’

Creating a declared temporary table in DB2 UDB
Use the DECLARE GLOBAL TEMPORARY TABLE statement to create a declared
temporary table.

DECLARE GLOBAL TEMPORARY TABLE temptab(col01 CHAR(5),
col02 CHAR(10)) NOT LOGGED;

INSERT INTO session.temptab SELECT * FROM tab1 WHERE col01>’C0000’;

The NOT LOGGED option is mandatory for the DECLARE GLOBAL TERMPOARY TABLE

statement.

To access a declared temporary table, you should use the schema name
‘SESSION’ with the table name.
144 DB2 UDB V7.1 Porting Guide

You can use the existing table’s column definition using the AS option or LIKE
option of the DECLARE GLOBAL TEMPORARY TABLE statement as following:

DECLARE GLOBAL TEMPORARY TABLE temptab
AS (SELECT * FROM tab1) DEFINITION ONLY NOT LOGGED

or:

DECLARE GLOBAL TEMPORARY TABLE temptab LIKE tab1 NOT LOGGED

The first example creates a declared temporary table temptab using the SELECT

statement. The second example creates the same declared temporary table
temptab with a regular table tab1.

When you create a declared temporary table, the name should not be
identical to the existing temporary table. However, you can replace the
existing declared temporary table with the new one by specifying the WITH

REPLACE option of the DECLARE GLOBAL TEMPORARY TABLE statement. For example,
if you want to execute the same stored procedure more than once within a
connection, and it creates a declared temporary table, you need to specify
the WITH REPLACE option, or you need to drop the declared temporary table
before creating the same declared temporary table. The declared temporary
table will be dropped when the connection is terminated.

In Sybase, global temporary tables can be created. A table whose name
starts with ‘tempdb.’ is created as a global temporary table. The following
example creates a global temporary table:

select * into table tempdb..temptab from tab1 where col01>’C0000’;

You can use a regular table in DB2 UDB for the purpose of a global temporary
table in Sybase, although you need to drop the table explicitly when you do
not need it any longer.

7.4.3 Considerations in declared temporary tables
Sybase logs the changes in temporary tables, whereas DB2 does not.
Because of this difference, the ROLLBACK statement affects temporary tables
differently on Sybase and DB2.

In Sybase, all the changes in temporary tables are logged, and issuing the
ROLLBACK statement can back out the changes.

In DB2, any changes in temporary tables are not logged, therefore:

• If you modify the contents of a declared temporary table using the INSERT,

UPDATE or DELETE statement within a transaction, and then roll back the
Chapter 7. Application conversion 145

transaction by the ROLLBACK statement, or the statement fails, DB2 deletes
all the rows of the declared temporary table.

• If you issue the ROLLBACK statement for the transaction that includes the
DECLARE GLOBAL TEMPORARY TABLE statement, DB2 UDB drops the declared
temporary table.

• If you issue the DROP TABLE statement for a declared temporary table,
issuing the ROLLBACK statement for that transaction only restores an empty
declared temporary table. Rolling back of the DROP TABLE statement does
not restore the rows that existed in the declared temporary table.

There are also a couple of considerations when you use declared temporary
tables.

Unless one or more cursors declared with the WITH HOLD option are still open
on the declared temporary table, the default behavior of a declared temporary
table is to delete all rows from the table when you commit a transaction. To
avoid deleting all rows, you can use the ON COMMIT PRESERVE ROWS option of the
DECLARE GLOBAL TEMPORARY TABLE statement.

In DB2 UDB, you need to define a user temporary table space for using
declared temporary tables. Sybase creates both local temporary tables and
global temporary tables in the tempdb database.

In Sybase, a global temporary table is treated almost the same way as a
regular table. However, there are some considerations when using a local
temporary table in Sybase. Table 26 shows the comparison in temporary
tables between Sybase and DB2 UDB.

Table 26. Temporary tables comparison between Sybase and DB2 UDB

Sybase DB2 UDB

Can set referencial constraints? No No

Can define rules (Sybase) or check
constraints (DB2 UDB)?

Yes No

Can define the default value for a column? Yes Yes

Can create indexes on? Yes No

Can create views? No No

Can create triggers? No No

Can use user-defined type? Yes• No
146 DB2 UDB V7.1 Porting Guide

• Only if user-defined data type is in the tempdb..systypes. If a user-defined
data type has been explicitly created in the tempdb database since the last
time the Server was started, you can use the user-defined data type with
local and global temporary tables.

The differences shown in Table 26 are due to the fact that Sybase simply
handles temporary tables like regular tables. For example, Sybase logs the
changes on temporary tables. Temporary tables in DB2 are implemented to
achieve high performance rather than the possibility to be recovered. Since
temporary tables normally exist only temporarily, but high performance is
required, we think this implementation is more suitable to this type of tables.

7.5 Save point

A save point is a mechanism of undoing work done by the DBMS when a
database request fails.

If an error occurs during execution of statements, the save point can be used
to undo changes made by the transaction between the time the save point
was started and the time the save point rollback is requested.

Sybase supports multiple save points, and these can be named. In DB2 UDB
Version 7.1, you can set only one save point at a time. If you want to set the
second save point, you need to release the previous one. We still support the
names for compatibility, with future DB2 UDB releases supporting multiple
save points. The following examples show differences in the save point
functionality between Sybase and DB2 UDB:

In Sybase:

BEGIN TRAN
INSERT INTO TABLE01(COL01,COL02) VALUES(‘00001’,’AAAAA’)
SAVE TRAN A ----- SAVEPOINT A

INSERT INTO TABLE01(COL01,COL02) VALUES(‘00002’,’BBBBB’)
SAVE TRAN B ----- SAVEPOINT B

UPDATE TABLE01 SET COL02=’CCCCC’ WHERE COL01=’00002’

At this point, you can execute COMMIT, ROLLBACK, ROLLBACK TRAN A (rollback to
save point A) or ROLLBACK TRAN B. (rollback to save point B).

In DB2 UDB:

INSERT INTO TABLE01(COL01,COL02) VALUES(‘00001’,’AAAAA’);
SAVEPOINT A ON ROLLBACK RETAIN CURSORS;

INSERT INTO TABLE01(COL01,COL02) VALUES(‘00002’,’BBBBB’);
RELEASE SAVEPOINT A;
Chapter 7. Application conversion 147

SAVEPOINT B ON ROLLBACK RETAIN CURSORS;
UPDATE TABLE01 SET COL02=’CCCCC’ WHERE COL01=’00002’

At this point, you can execute COMMIT, ROLLBACK, ROLLBACK TO SAVEPOINT B,

but you cannot execute ROLLBACK to SAVEPOINT A. If you do not execute the
RELEASE SAVEPOINT A statement in this example, you will get an SQL error
‘SQL20112N’ when you set the save point B.

7.5.1 Setting a save point
In DB2 UDB, the following SQL statements enable you to create and control
save points:

• SAVEPOINT - To set a save point, issue the SAVEPOINT statement. To
improve the clarity of your code, you can choose a meaningful name for
the save point. Options that can be specified in this statement include:

- ON ROLLBACK RETAIN CURSORS - This option is mandatory, and
indicates that the cursors are unchanged by a rollback to a save point
unless data definition languages (DDL) are issued after the save point
is set.

- ON ROLLBACK RETAIN LOCKS - This option specifies system
behavior upon rollback to the save point with respect to locks acquired
after the setting of the save point. In DB2 UDB Version 7.1, this is the
only option you can specify and the default. The acquired locks are not
released when the ROLLBACK TO SAVEPOINT statement is executed. This is
the same behavior as Sybase. The locks remain when the ROLLBACK

TRAN savepoint statement is executed in Sybase.

• RELEASE SAVEPOINT - To release a save point, issue a RELEASE

SAVEPOINT statement. If you do not explicitly release a save point with the
RELEASE SAVEPOINT statement, it is released at the end of the transaction.

• ROLLBACK TO SAVEPOINT - To rollback to a save point, issue the
ROLLBACK TO SAVEPOINT statement. The impact on cursors resulting from a
ROLLBACK TO SAVEPOINT depends on the statements within the save point
scope.

- If DDLs or the SET INTEGRITY statements on which a cursor is dependent
are executed after a save point is set, the cursor is made invalid when
the ROLLBACK TO SAVEPOINT statement is executed.

- Otherwise, if the cursor is referenced within the save point, the cursor
remains open and positioned before the next logical row of the result
table.

- Otherwise, the cursor is not affected by the ROLLBACK TO SAVEPOINT.

All locks are retained after the ROLLBACK TO SAVEPOINT statement.
148 DB2 UDB V7.1 Porting Guide

ALL LOB locators are preserved following a ROLLBACK TO SAVEPOINT.

The following example shows the usage of save points:

INSERT INTO TABLE01 (COL01,COL02) VALUES (1,100);
INSERT INTO TABLE01 (COL01,COL02) VALUES (1,200);
SAVEPOINT S1 ON ROLLBACK RETAIN CURSORS; (1)
INSERT INTO TABLE01 (COL01,COL02) VALUES (2,300);
INSERT INTO TABLE01 (COL01,COL02) VALUES (2,400);
ROLLBACK TO SAVEPOINT S1; (2)
SAVEPOINT S2 ON ROLLBACK RETAIN CURSORS; (3)
INSERT INTO TABLE01 (COL01,COL02) VALUES (3,500);
INSERT INTO TABLE01 (COL01,COL02) VALUES (3,600);
COMMIT;

Contents of TABLE01:

COL01 COL02
------- -------

1 100
1 200
3 500
3 600

This example includes two save points.

1. The first save point is named S1.

2. After setting the save point S1, the ROLLBACK TO SAVEPOINT statement is
issued and two of the INSERT statements are roll backed within the save
point scope between (1) and (2).

3. The new savepoint(3) which is named S2 is declared.

7.5.2 Considerations in using save points
DB2 UDB V7.1 places the following restrictions on your use of save points in
applications:

• You cannot use save points within atomic compound SQL.

• You cannot use atomic compound SQL while a save point is set. Sybase
does not have the function equivalent to compound SQL in DB2 UDB.

• You cannot use a save point while another save point is set. Sybase
supports nested save points.

• You cannot use save points in triggers while Sybase supports save points
in triggers.
Chapter 7. Application conversion 149

7.6 Sybase's global variable

Sybase has many global variables, which are system-defined variables that
Sybase server updates on an ongoing basis. You can query global variables
to monitor system activities or get connection information. For some global
variables, you can also set a value using the SET command to control query
processing of the current session.

To monitor system activities, you can use the Snapshot Monitor in DB2 UDB.
DB2 UDB also has special registers, which are also updated on an ongoing
basis by DB2 UDB. For some special registers, you can use the SET command
to update the value.

Some Sybase global variables can be mapped to the data element which you
can obtain using the Snapshot Monitor in DB2, others can be mapped to DB2
special registers or different features of DB2 UDB depending on the purpose
of the global variable. In this section, we show you how you can implement
the functionality of the following global variables in DB2 UDB:

• @@connections

• @@error

• @@sqlstatus

• @@identity

• @@parallel_degree

• @@rowcount

7.6.1 The @@connections global variable
The @@connections global variable returns the number of logins or attempted
logins to the Sybase server since it was started.

In DB2, you can execute the Snapshot Monitor and get the ‘Connects Since
Database Activation’ element, which is indicated as ‘Application connects’ in
the output, as the following example:

The Snapshot Monitor returns the number of connected user since the
database was activated. DB2 activates a database when the first application

$ db2 get snapshot for database on dbname | grep ‘Application connects’
Application connects = 24
150 DB2 UDB V7.1 Porting Guide

is connected to the database or you execute the ACTIVATE DATABASE command
for the database.

Be aware that the value obtained from the Snapshot Monitor does not include
the number of the failed connection, and also the value is counted at
database level since each connection is established to a database in DB2.

7.6.2 The @@error and the @@sqlstatus global variables
In Sybase, you can query the @@error or @@sqlstatus global variables to check
whether the previous statement succeeded or not. The @@error has the error
status of the most recently executed statement. The @@sqlstatus has the
status from the last FETCH statement. Its value is 0 (success), 1 (error), or 2
(no more data).

In DB2 UDB, return codes from SQL statements are handled with SQLCODE or
SQLSTATE. You can use either of them in applications. The SQLCODE conforms to
ISO/ANSI SQL standard, and the SQLSTATE is based on the ISO/ANSI SQL92
standard.

Details about error handling in SQL Stored Procedures is described in
7.8.2.1, “Error handling” on page 170.

7.6.3 The @@identity global variable
In Sybase, the @@identity global variable contains the last identity value
inserted into an identity column in the current user session.

You can use the IDENTITY_VAL_LOCAL function in DB2 UDB for the same
purpose.

The value returned from the IDENTITY_VAL_LOCAL function is the value assigned
to the identity column of the table identified in the most recent single row
INSERT statement with a VALUES clause for a table containing an identity
column.

To update the value returned to the IDENTITY_VAL_LOCAL function, the INSERT

statement must be a single row INSERT statement with a VALUES clause that is
issued for a table containing an identity column as the following example:

INSERT INTO table01 (col01,col02) VALUE (default,1)

In this example, it is assumed that the column col01 is the identity column of
the table table01.
Chapter 7. Application conversion 151

The following statements will not affect the value returned to the
IDENTITY_VAL_LOCAL function because they are not single row insert statements
with a VALUES clause:

INSERT INTO table01 (col01,col02) VALUE (default,1),(default,2)
INSERT INTO table01 (col02) SELECT col03 from table02

In Sybase, the INSERT statement does not need to be a single row INSERT

statement with a VALUES clause for the @@identity variable to get the inserted
identity value. The INSERT statement with the SELECT statement, as in this
example, will update the value of the @@identity variable:

INSERT INTO TABLE01(COL01) SELECT COL01 FROM TABLE02

Note that the IDENTITY_VAL_LOCAL function gets the identity value which was
assigned by the most recent INSERT statement within the same program or
stored procedure. For example, if an identity value is generated by the INSERT

statement in a stored procedure, the IDENTITY_VAL_LOCAL function called in the
caller program cannot get the inserted identity value. You need to use the
identity_val_local function in the same stored procedure to get the inserted
identity value. Sybase has the same consideration.

The IDENTITY_VAL_LOCAL function in DB2 UDB returns the null value when a
COMMIT or ROLLBACK of a unit of work has occurred since the most recent INSERT
statement that assigned a value.

In Sybase, the updated @@identity global variable is preserved even if the
ROLLBACK statement is issued. If you insert 10 rows into the table that has an
identity column and execute the ROLLBACK statement, the @@identity variable
will have the value 10.

The following example shows the usage of the @@identity global variable in
Sybase.

Create table:

CREATE TABLE TABLE01
(IDCOL NUMERIC(5,0) IDENTITY,
COL01 CHAR(5))

Sample operation:

INSERT INTO TABLE01 (COL01) VALUES(“00001”)
(1 row affected)
SELECT @@IDENTITY

1
INSERT INTO TABLE01 SELECT COL01 FROM TABLE02
152 DB2 UDB V7.1 Porting Guide

(4 rows affected)
SELECT @@IDENTITY

5

The following example shows the use of IDENTITY_VAL_LOCAL function in DB2
UDB.

Create table:

CREATE TABLE TABLE01
(IDCOL INT NOT NULL GENERATED ALWAYS AS IDENTITY
(START WITH 1,INCREMENT BY 1),
COL1 CHAR(5));

Sample operation:

db2 +c “INSERT INTO TABLE01(COL1) VALUES(‘00001’)”
db2 +c “VALUES(IDENTITY_VAL_LOCAL())”

1.
db2 +c “INSERT INTO TABLE01(COL01) SELECT COL01 FROM TABLE02”
db2 +c “VALUES(IDENTITY_VAL_LOCAL())”

1.

Note that you must execute these operations with the auto-commit mode set
off. Otherwise the INSERT statement is automatically committed and the
IDENTITY_VAL_LOCAL function returns the null value. In this sample, “+c” option
is used to set the auto-commit mode off.

The second INSERT statement does not affect the result of IDENTITY_VAL_LOCAL
function, because this statement is not a single row INSERT statement with a
VALUES clause.

7.6.4 The @@parallel_degree global variable
Both Sybase and DB2 UDB have a capability to exploit multiple processors to
execute complex SQL requests effectively.

In Sybase, the @@parallel_degree variable contains the current maximum
parallel degree setting.

You can use CURRENT DEGREE special register in DB2 UDB for the same
purpose. Both the value of @@parallel_degree variable and the CURRENT DEGREE

special register can be set and retrieved. The following examples show the
Chapter 7. Application conversion 153

usage of the @@parallel_degree global variable and the CURRENT DEGREE special
register:

In Sybase:

1> set parallel_degree 1
2> go
1> select @@parallel_degree
2> go

1

In DB2 UDB:

db2 "set current degree = '2'"
db2 “values(current degree)”
1

2

In DB2 UDB, the CURRENT DEGREE special register specifies the degree of
intra-partition parallelism for the execution of dynamic SQL statements. Valid
values are 'ANY' or the string representation of an integer between 1 and
32767. For static SQL statements, you can use the DEGREE option of the BIND

command to set the query degree.

If the value of CURRENT DEGREE is 'ANY', the execution of dynamic SQL
statements will involve intra-partition parallelism using a degree determined
by the database manager.

7.6.5 The @@rowcount global variable
In Sybase, the @@rowcount variable contains the number of rows affected by
the last query. The value represents the number of rows of a cursor result set
returned to the client, up to the last fetch request.

In DB2 UDB, you can use the GET DIAGNOSTICS statement with the ROW_COUNT

option in stored procedures. If the previous statement is the PREPARE

statement, ROW_COUNT identifies the estimated number of result rows in the
prepared statement. If the previous statement is the DELETE, INSERT, or UPDATE
statement, ROW_COUNT identifies the number of rows deleted, inserted, or
updated by that statement, excluding rows affected by either triggers or
referential integrity constraints.

After the SELECT or the FETCH statement is executed, Sybase sets the number
of affected rows to the @@rowcount variable, whereas the ROW_COUNT is not
affected by the SELECT or the FETCH statement in DB2. Only after the PREPARE
154 DB2 UDB V7.1 Porting Guide

statement, you can obtain the estimated number of rows using the GET

DIAGNOSTICS statement. The GET DIAGNOSTICS statement derives the number of
rows from the statistics information in the system catalog.

The following stored procedure uses the GET DIAGNOSTICS statement to get the
number of affected rows:

CREATE PROCEDURE sqlprocg (IN deptnbr VARCHAR(3),OUT rcount INTEGER)
LANGUAGE SQL
BEGIN

DECLARE SQLSTATE CHAR(5)
UPDATE CORPDATA.PROJECT

SET PRSTAFF = PRSTAFF + 1.5
WHERE DEPTNO = deptnbr;

GET DIAGNOSTICS rcount = ROW_COUNT;
END

This stored procedure issues the UPDATE statement and the GET DIAGNOSTICS

statement, and returns the affected row count.

In Sybase you can use the @@rowcount variable to set the maximum number of
rows that will be retrieved in the following SQL queries, with 0 meaning all of
them.

DB2 UDB does not have such a variable; however, you can set the maximum
number of retrieved rows using “FETCH FIRST n ROWS ONLY” option of the SELECT

statement.

The following examples show the usage of the @@rowcount global variable and
the FETCH FIRST n ROWS ONLY option of the SELECT statement:

In Sybase:

set rowcount 100
select * from table01

In DB2 UDB:

select * from table01 fetch first 100 rows only

These two examples above returns only the first 100 rows from the table
table01.

7.7 Trigger conversion

A trigger defines a set of actions that are activated, or triggered, by an insert,
update, or delete on specified base table. Triggers are powerful tools that can
Chapter 7. Application conversion 155

be used for several purposes. They can be implemented to support general
forms of integrity such as business rules; they can be used to make sure that
whenever a certain action occurs in a database, another action – or actions –
automatically follows. In general, triggers can be used to enforce the validity
of data and to capture rules that involve transitional business rules, in other
words, rules that involve different states of the data. In this section, we
discuss the trigger conversion from Sybase to DB2.

7.7.1 Sybase and DB2 triggers
Table 27 shows differences between Sybase triggers and DB2 triggers.

Table 27. Sybase - DB2 trigger differences

Sybase DB2

Maximum length for trigger
name

30 characters 18 characters

Triggering Event Insert, update or delete of
rows in a specified table

Insert, update or delete of
rows in a specified table

Activation time AFTER insert, update or
delete

BEFORE or AFTER insert,
update or delete

Allowed SQL statements All statements except DML
type statements

Before triggers:
The SET statements that
modify the new row,
SELECT, VALUES, SIGNAL.

After triggers: INSERT,
DELETE, UPDATE,
SELECT, VALUES, SIGNAL

Granularity (activated once
an SQL statement, or once
for each row modified)

Statement level Before triggers:
row level (FOR EACH ROW

option)

After triggers:
Statement level (FOR
EACH STATEMENT option)
or row level (FOR EACH

ROW option)

Transition variables DELETED, INSERTED NEW, OLD, NEW_TABLE,
OLD_TABLE

Nesting 16 levels 16 levels
156 DB2 UDB V7.1 Porting Guide

As you can see in the table above, Sybase triggers always perform the trigger
action after the changes caused by the actual update of the subject table.
DB2 trigger can perform the trigger action after or before the changes.

Sybase triggers can be activated only once an SQL statement, whereas DB2
triggers can be activated once an SQL statement or once for each row
modified. In Sybase, a trigger needs to have a cursor using the logical tables
INSERTED or DELETED to access individual rows.

Sybase allows triggers to have more various SQL statements than DB2 does,
thus converting Sybase triggers into DB2 triggers is not always a trivial task.

In the following sections, we show four Sybase triggers and how we could
convert them into DB2 triggers.

7.7.2 Conversion of an insert, update trigger
The first trigger example here fires on an insert or update to the table01 table.
In DB2, only one triggering event (insert, update, delete) may be specified per
trigger. In order to convert this procedure two triggers will need to be created
- one for the insert event and one for the update event.

Here is the Sybase trigger:

create trigger trig01
on table01 for insert, update
as
begin
declare @savecount int
select @savecount = @@rowcount
--Trigger is not fired if the table is maintained by the maint user
if suser_name() like "%maint"

return
if @savecount = 0
return

if not exists (select * from table02,inserted where
col01 = "AA" and col02 = “BB”)

begin
raiserror 88888 "BB does not exist.”
rollback transaction
return

end

if not exists (select * from table02,inserted where
col01 = "AA" and col02 = “CC”)

begin
Chapter 7. Application conversion 157

raiserror 99999 "CC does not exist."
rollback transaction
return

end

end

Here is the DB2 UDB translation. We need to create two triggers, for insert
and for update.

For insert:

CREATE TRIGGER trig01ins
AFTER INSERT (1)
ON table01
REFERENCING NEW_TABLE as new (2)
FOR EACH STATEMENT (3)
MODE DB2SQL (4)
WHEN
((select USER from sysibm.sysdummy1 where USER like '%maint') is null

(5)
and
(select count(*) from new) > 0)) (6)
BEGIN ATOMIC (7)
VALUES (
CASE WHEN (select count(*) from table02, new where

col01 = 'AA' and col02 = ‘BB’) = 0
THEN raise_error ('88888', 'BB does not exist.') (8)
WHEN (select count(*) from table02,new where

col01 = 'AA' and col02 = ‘CC’) = 0
THEN raise_error ('99999', 'CC does not exist.')
else 0
end);

end

Here is the trigger for update:

CREATE TRIGGER trig01upd
AFTER UPDATE
ON table01
REFERENCING NEW_TABLE as new
FOR EACH STATEMENT
MODE DB2SQL
WHEN
((select USER from sysibm.sysdummy1 where USER like '%maint') is null
and
(select count(*) from new) > 0))
158 DB2 UDB V7.1 Porting Guide

BEGIN ATOMIC
VALUES (
CASE WHEN (select count(*) from table02, new where

col01 = 'AA' and col02 = ‘BB’) = 0
THEN raise_error ('88888', 'BB does not exist.')
WHEN (select count(*) from table02,new where

col01 = 'AA' and col02 = ‘CC’) = 0
THEN raise_error ('99999', 'CC does not exist.')
else 0
end);

end

1. Since all Sybase triggers are — by definition — AFTER triggers, the
triggered action AFTER will be consistent throughout the conversion of
these triggers. Also, DB2 allows only one triggering event (INSERT, UPDATE
or DELETE) to be specified for the triggering action.

2. Sybase uses two special temporary tables in trigger statements: the
deleted table and the inserted table - these are used to temporarily
preserve the effects of an insert, update or delete. In DB2, the row
transition variables NEW and OLD, and the table transition variables OLD_TABLE

and NEW_TABLE are used to reference the data values of rows or tables
before or after a triggering event.

3. All Sybase triggers are statement level triggers. In most cases, converted
triggers will remain as statement level triggers.

4. MODE DB2SQL: This is required. This clause is used to specify the mode
of triggers. This is the only valid mode currently supported.

5. The WHEN clause evaluates to True or False. The associated action is
performed only if the specified search condition evaluates as true. In this
case the trigger tests to see if the user is %maint, or if no rows were
affected by the triggering event. If these conditions evaluate to true, no
triggering action is performed.

6. The transition table variable NEW is used to examine the number of rows
modified by the insert statement; if there are no rows, no triggering action
is performed.

7. BEGIN ATOMIC - END : If the trigger body consists of more than one SQL
statement, the statements are enclosed between BEGIN ATOMIC and END. In
this case it is optional, since there is only one SQL statement.

8. The raise_error function aborts the processing of the current SQL
statement and raises an error condition. It also rolls back all database
changes caused by the current SQL statement. The second parameter, a
message string, is returned to the application program in the sqlerrmc field
Chapter 7. Application conversion 159

of the SQLCA structure. This replaces rollback transaction in the Sybase
trigger.

7.7.3 Conversion of cursor processing in Sybase triggers
Since Sybase triggers are all statement-level triggers, your Sybase source
trigger might have a cursor to examine each row of the affected table. DB2
triggers can be row-level triggers, and you can use the row transition variable
NEW to examine each row of the affected table. See the following Sybase
trigger and how we could convert it into a DB2 trigger:

Sybase Source:

create trigger trg02
on table02 for insert, update
as
begin

declare @savecount int,
@var01 varchar(10)

select @savecount = @@rowcount

--Trigger is not fired if the table is maintained by the maint user
if suser_name() like "%maint"

return
if @savecount = 0
return
declare csr_inserted cursor for select col01 from inserted
open csr_inserted
fetch csr_inserted into @var01
while @@sqlstatus = 0
BEGIN
/* Verify against transaction detail */
IF @var01 != 'DEFAULT'
BEGIN
if not exists (select * from table03 a, inserted i
where a.colaa = @var01
begin
raiserror 77777 "There is no record like this."
rollback transaction
return

end
END
fetch csr_inserted into @var01
END

end
160 DB2 UDB V7.1 Porting Guide

Here is the DB2 conversion:

For insert:

CREATE TRIGGER trg02ins
AFTER INSERT ON table02
REFERENCING NEW AS newrow NEW_TABLE AS newtable
FOR EACH ROW MODE DB2SQL (1)
WHEN ((select count(*) from newtable) > 0

and (select USER from sysibm.sysdummy1
where USER like '%maint') is null

and (select newrow.col01 from newtable) != 'DEFAULT')
BEGIN ATOMIC
VALUES(
CASE WHEN (select count(*) from table03 a, newtable n

where a.colaa = newrow.col01) = 0
THEN raise_error ('77777', 'There is no record like this.')
else 0
end);

END

For update:

CREATE TRIGGER trg02upd
AFTER UPDATE ON table02
REFERENCING NEW AS newrow NEW_TABLE AS newtable
FOR EACH ROW MODE DB2SQL (1)
WHEN ((select count(*) from newtable) > 0

and (select USER from sysibm.sysdummy1
where USER like '%maint') is null

and (select newrow.col01 from newtable) != 'DEFAULT')
BEGIN ATOMIC
VALUES(
CASE WHEN (select count(*) from table03 a, newtable n

where a.colaa = newrow.col01) = 0
THEN raise_error ('77777', 'There is no record like this.')
else 0
end);

END

• FOR EACH ROW: this specifies that the triggered action be applied once
for each row of the subject table that is affected by the triggering SQL
operation. Since Sybase triggers are all statement-level triggers the
Sybase trigger needed to use a cursor to examine the value of the
affected table in each row.
Chapter 7. Application conversion 161

7.7.4 Conversion of Sybase delete triggers
The next example deletes rows from joined tables. DB2 does not allow joined
tables in a delete statement; thus, the delete statement need to be replaced
by a sub-query. See the following source Sybase trigger and how we
converted it.

Sybase source:

create trigger trg03
on table04 for delete
as
begin

--Trigger is not fired if the table is maintained by the maint user
if suser_name() like "%maint"

return

delete table05 from table05 a,deleted b
where a.col01 = b.col01

end

Here is the DB2 trigger converted from the Sybase source trigger:

CREATE TRIGGER trg03
AFTER DELETE ON table04
REFERENCING OLD_TABLE AS oldtable
FOR EACH STATEMENT MODE DB2SQL
WHEN ((select USER from sysibm.sysdummy1 where USER like '%maint') is
null)
BEGIN ATOMIC

delete from table05
where col01= (select col01 from oldtable); (1)

END

1. DB2 does not allow joined tables in deletes; this needed to be replaced by
a subquery.

7.7.5 Conversion of Sybase triggers: if update (column name)
The next example is an update trigger that is fired when either the column
col01 or col02 of the table06 is updated. See the following Sybase source
trigger and the DB2 trigger we converted.
162 DB2 UDB V7.1 Porting Guide

Sybase Source:

create trigger trg04 on table06 for update as
begin

declare @count int

select @count = count(*) from inserted

if @count = 0
return

if update(col01) or update(col02)
begin
rollback transaction
raiserror 666666 'can not update col01 or col02'
return

end

insert table07 (col01,col02)
select getdate(), ‘tried to update col01 or col02’ from inserted

end

Here is the DB2 conversion:

CREATE TRIGGER trg04
AFTER UPDATE OF col01, col02 ON table06 (1)
REFERENCING NEW_TABLE AS new
FOR EACH STATEMENT MODE DB2SQL
WHEN ((select count(*) from new) > 0)

BEGIN ATOMIC
SIGNAL SQLSTATE '66666' ('can not update col01 or col02'); (2)
insert into table07 (col01,col02)

(select CURRENT TIMESTAMP,’tried to update col01 or col02’ from new);

END

1. AFTER UPDATE OF <column Name>: The trigger will be activated by the
update of a column identified in the column-name list.

2. SIGNAL SQLSTATE: the SIGNAL statement raises an error condition and
rolls back the effects of an SQL statement; however, it leaves the
transaction in progress so the user or application program can still choose
to commit or rollback the other statements in the transaction. The
message specified by the SIGNAL statement is returned to the application
program in the sqlerrmc field of the SQLCA structure.
Chapter 7. Application conversion 163

7.7.6 Creating triggers from the command line processor
To create a trigger from the DB2 command line processor (CLP), which you
can start by typing db2 from the operating system command prompt, you
should first place the source code for the trigger into a file. The CLP uses the
semicolon (;) as the default delimiter for statements, however if the triggers
have compound statements, the statements within the compound statement
are also terminated with semicolons, causing the CLP to interpret those
semicolons as the end of the CREATE TRIGGER statement. This results in a
syntax error.

To avoid this, use an alternative terminating character in your file, and change
the CLP invocation command to identify this new character as the terminating
character.

The following is an example to crate a trigger from the CLP. The file name is
myfile.trg and the terminating character is an exclamation point (!):

CONNECT TO <database name> USER <username> USING <password>!
CREATE TRIGGER trg03
AFTER DELETE ON table04
REFERENCING OLD_TABLE AS oldtable
FOR EACH STATEMENT MODE DB2SQL
WHEN ((select USER from sysibm.sysdummy1 where USER like '%maint') is
null)
BEGIN ATOMIC
delete from table05 where col01= (select col01 from oldtable);

END! -- (!) is the terminating character

CONNECT RESET!

To execute the above file, you must invoke the CLP with the -td parameter to
specify an exclamation point (!) as the terminating character, as follows:

db2 -td! -fmyfile.trg
164 DB2 UDB V7.1 Porting Guide

7.7.7 Creating triggers from the Control Center
Triggers can also be created from the Control Center GUI. Perform the
following steps:

1. Open the Control Center, expand the SYSTEMS, INSTANCES and
DATABASES until you see the Database in which you want to create the
trigger.

2. Expand the Database until you see Tables, Views, Aliases, Triggers.
Select Triggers, right-click, then select Create as shown in Figure 27.

Figure 27. Creating a trigger from the Control Center (1)

3. You will be presented with the dialog as shown in Figure 28. Type the
trigger name, select the table on which you want to create the trigger, and
select the operation that fires the trigger.
Chapter 7. Application conversion 165

Figure 28. Creating a trigger from the Control Center (2)

4. Select the Triggered Action tab, and you will be presented with the dialog
as shown in Figure 29. Depending on whether you are creating a BEFORE
of AFTER Trigger, complete the correlation name, and/or Temporary table
names sections; and enter the logic for the body of the trigger.
166 DB2 UDB V7.1 Porting Guide

Figure 29. Creating a trigger from the Control Center (3)

5. When you are finished you may view the completed script by choosing
Show SQL as shown in Figure 30.

Figure 30. Creating a trigger from the Control Center (4)

6. When you are done viewing the SQL, choose Close, then OK, on the
Triggered Action tab. If you receive no error message, the trigger has
been successfully created, and you may view it in the Control Center.
Chapter 7. Application conversion 167

7.8 Stored procedure conversion

A stored procedure resides on a database server, executes, and accesses
the database locally to return information to client applications. Using stored
procedures allows a client application to pass control to a stored procedure
on the database server. This allows the stored procedure to perform
intermediate processing on the database server, without transmitting
unnecessary data across the network. Only those records that are actually
required at the client need to be transmitted. This can result in reduced
network traffic and better overall performance.

A stored procedure also saves the overhead of having a remote application
pass multiple SQL statements to a database on a server. With a single
statement, a client application can call the stored procedure, which then
performs the database access work and returns the results to the client
application. The more SQL statements that are grouped together for
execution in the stored procedure, the larger the savings resulting from
avoiding the overhead associated with network flows for each SQL statement
when issued from the client.

Prior to DB2 UDB Version 7.1, you needed to develop stored procedures
using external programming language such as C, whereas Sybase has
allowed you to write stored procedures using the T-SQL language. In DB2
UDB Version 7.1, you can write stored procedures whose procedural logic is
contained in the CREATE PROCEDURE statement. This type of stored procedure is
called an SQL procedure. In this section, we discuss the conversion from
T-SQL stored procedure in Sybase to SQL procedures in DB2 UDB.

7.8.1 Setting the environment to build SQL procedures in DB2 UDB
When you execute a CREATE PROCEDURE statement to build an SQL procedure,
DB2 UDB generates a C program in which the SQL statements of the
procedure body are embedded, and then pre-compiles it (compiles it into a
executable file in the background). Therefore, you must install a supported C
or C++ compiler on the DB2 UDB server.

Supported Compiler
For the AIX platform, either of the following compilers must be installed:

• IBM C for AIX Version 3.6.6

• IBM C Set++ for AIX Version 3.6.6

• IBM VisualAge C++ for AIX Version 4.0
168 DB2 UDB V7.1 Porting Guide

Setting up environment variables
You can provide the value of PATH, INCLUDE, and LIBPATH environment variables
for the compiler on the DB2 UDB server. You can create a batch file to set
those environment variables and specify it using the
DB2_SQLROUTINE_COMPILER_PATH DB2 registry variable, as follows:

db2set DB2_SQLROUTINE_COMPILER_PATH=Batch_File

In this statement, Batch_File is the full path name for the batch file setting
environment variables.

If you do not set the DB2_SQLROUTINE_COMPILER_PATH DB2 registry variable, the
default file DB2HOME/function/routine/sr_cpath is used (DB2HOME is the home
directory of instance owner for DB2 UDB). This default file is generated
automatically by DB2 UDB.

Compiler options
If you do not specify the DB2_SQLROUTINE_COMPILE_COMMAND DB2 registry
variable, the default compiler command is as follows:

xlC -H512 -T512 -I$HOME/sqllib/include SQLROUTINE_FILENAME.c
-bE:SQLROUTINE_FILENAME.exp -e SQLROUTINE_ENTRY
-o SQLROUTINE_FILENAME -L$HOME/sqllib/lib -lc -ldb2

If you want to change it, specify the new compiler command by using the
DB2_SQLROUTINE_COMPILE_COMMAND DB2 registry variable on the server. In our
test environment, we needed to set the DB2_SQLROUTINE_COMPILE_COMMAND DB2
registry variable as follows, because we used IBM C for AIX Version 3.6.6:

xlc -H512 -T512 -I$HOME/sqllib/include SQLROUTINE_FILENAME.c
-bE:SQLROUTINE_FILENAME.exp -e SQLROUTINE_ENTRY”
-o SQLROUTINE_FILENAME -L$HOME/sqllib/lib -lc -ldb2

Precompile and bind options
As already described, executing a CREATE PROCEDURE statement generates an
embedded SQL program and pre-compiles/compiles it. You can provide
precompile and bind options to that process using the
DB2_SQLROUTINE_PREPOPTS DB2 registry variable on the DB2 UDB server, as in
the following example:

db2set “DB2_SQLROUTINE_PREPOPTS=BLOCKING ALL ISOLATION UR”

The following options can be set for the DB2_SQLROUTINE_PREPOPTS DB2 registry
variable:

• BLOCKING {UNAMIBIG | ALL | NO}

• DATETIME {DEF | USA | EUR | ISO | JIS | LOC }
Chapter 7. Application conversion 169

• DEGREE {1 | degree-parallelism | ANY }

• EXPLAIN { NO | YES | ALL }

• EXPLAINSNAP { NO | YES | ALL }

• INSERT { DEF | BUF }

• ISOLATION { CS | RR | US | RS | NC }

• QUERYOPT optimization-level

• SYNCPOINT { ONEPHASE | TWOPHASE | NONE }

When you change the DB2_SQLROUTINE_PREPOPTS DB2 registry variable on the
DB2 UDB server, you do not need to restart the DB2 server to make this
change available.

For detailed information about these options, consult the description of the
PRECOMPILE PROGRAM in the DB2 UDB Command Reference,
SC09-2950.

7.8.2 Converting stored procedures from Sybase to DB2
This section discusses the conversion of stored procedures including the
following topics:

1. Error handling in procedure

2. Simple procedure with 1 result set

3. Procedure with multiple result sets

4. Procedure with a single row

5. Nested procedures

6. Procedure with save points

7. Procedure that treats DATETIME data

8. Procedure with a SET ROWCOUNT statement

9. Procedure with temporary table

The first six sections discuss basic topics of conversion, and the last three
sections discuss the stored procedure conversion which we performed for our
customer application.

7.8.2.1 Error handling
Sybase has the @@error and the @@sqlstatus global variables for error
handling. The @@error global variable has the error status after each
execution of any SQL statements, and the @@sqlstatus global variable has the
170 DB2 UDB V7.1 Porting Guide

status from the last FETCH statement. Its value is 0 (success), 1 (error), or 2
(no more data).

DB2 UDB has SQLSTATE and SQLCODE for error handling. The error
handling model of the DB2 UDB’s SQL stored procedure language is based
on exception handling. An error not handled in the stored procedure makes it
leave immediately before being able to check the SQLSTATE or the
SQLCODE in the stored procedure, expecting the client to handle it.

For example, if the insert fails (for any reason), the DB2 stored procedure as
it is translated here, will exit just after the INSERT statement not allowing you to
set the ok variable based on the SQLSCODE.

• Original Sybase Stored Procedure:

create proc x(@mydate datetime,@ok integer out)
begin

insert into tab(dt) values(@mydate)
if(@@error = 0) --- check @@error global variable

select @ok=0;
else

select @ok=1;
end

• Direct translation to DB2 UDB

CREATE PROCEDURE X(IN mydate TIMESTAMP, OUT ok INTEGER)
LANGUAGE SQL
BEGIN

DECLARE SQLCODE INTEGER DEFAULT 0;
INSERT INTO tab(dt) VALUES(mydate); -- will exit here if fails
IF(SQLCODE = 0) THEN --- have an intention to check SQLCODE

SET ok=0;
ELSE

SET ok=1;
END IF;

END

Declaring error handler
To simulate the behavior of the @@error variable, the CONTINUE handler that
updates your own error variable will have to be defined. This will prevent the
stored procedure to exit prematurely.

The following stored procedure will behave like expected. If the insert fails,
the declared error handler will be invoked and the variable for the SQLCODE
will be set, then control will be returned to the statement that follows the
INSERT statement that raised the exception.
Chapter 7. Application conversion 171

CREATE PROCEDURE X(IN mydate TIMESTAMP, OUT ok INTEGER)
LANGUAGE SQL
BEGIN

DECLARE SQLCODE INTEGER DEFAULT 0; (1)
DECLARE var_SQLCODE INTEGER DEFAULT 0; (2)
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION,SQLWARNING,NOT FOUND (3)

SET var_SQLCODE = SQLCODE; (4)
INSERT INTO tab(dt) VALUES(mydate); (5)
IF(var_SQLCODE <> 0) THEN (6)

SET ok=0;
ELSE

SET ok=1;
END IF;

END

1. This statement is a declaration of variables for SQLCODE.

2. This statement is a declaration of variables to save SQLCODE.

3. This statement is a declaration of the handler for SQL exceptions. If an
SQL exception occurs, the next statement (4) is executed and this
procedure continues to the next step.

4. This statement is executed when SQL exception occurs. If you want to
execute multiple statements here, you can compound them using the BEGIN

and END statement.

5. This INSERT statement is executed.

6. This statement checks the value of SQLCODE, and sets the ok variable.

In this example, the variable to save the SQLCODE (var_SQLCODE) is initialized
with the value 0 when it is declared, and it will be updated if the error handler
is invoked.

This example has only one INSERT statement. If you want to execute more
than one SQL statement and check the SQLCODE each time in the
procedure, you need to initialize the user variable of the SQLCODE
(var_SQLCODE in this example) with 0 before executing each SQL statement
since the error handler is not invoked when an SQL statement succeeds. For
example, assuming you have two INSERT statements in this stored procedure
and the first statement fails but the second succeeds, the error handler would
be invoked when the first statement fails and it would set a negative
SQLCODE to the var_SQLCODE variable. However, the variable would keep the
negative value even after the second statement succeeds, unless you
initialize the variable with the zero value.
172 DB2 UDB V7.1 Porting Guide

RAISERROR command and SIGNAL statement
Sybase has the RAISERROR command for error handling. DB2 UDB has the
SIGNAL statement, which features the same functionality. See the following
example:

In Sybase:

create procedure showtable_sp @tabname varchar(18)
as
if not exists (select name from sysobjects where name = @tabname) (1)

begin
raiserror 99999 "Table %1! not found.",@tabname (2)

end
else

begin
select name, type, crdate from sysobjects where name = @tabname

end

1. Here, we are checking the existence of the specified table.

2. If the table does not exist, the RAISERROR command is executed and return
an error code to the caller program.

In DB2 UDB:

CREATE PROCEDURE showtable_sp(IN v_tabname VARCHAR(18))
RESULT SETS 1 LANGUAGE SQL
BEGIN

DECLARE v_tmp_var CHAR(10);
DECLARE v_temp_SQLCODE INT DEFAULT 0;
DECLARE SQLCODE INT;
DECLARE v_message varchar(128);
IF NOT EXISTS((1)
SELECT name FROM sysibm.systables WHERE name = v_tabname) THEN
set v_message = 'Table '||v_tabname||'! not found.';
SIGNAL SQLSTATE '99999' SET MESSAGE_TEXT = v_message; (2)

ELSE
BEGIN

DECLARE SCW_Cur1 CURSOR WITH HOLD WITH RETURN
FOR SELECT name, type, ctime

FROM sysibm.systables
WHERE name = v_tabname;

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION,SQLWARNING,NOT FOUND

To check the SQLCODE, you should initialize the user variable of
SQLCODE with 0 before executing each SQL in a stored procedure.

Note
Chapter 7. Application conversion 173

(3)
SET v_temp_SQLCODE = SQLCODE;

OPEN SCW_Cur1;
END;

END IF;
END

1. Here, we are checking the existence of the specified table.

2. If the table does not exist, the SIGNAL statement is executed, returning an
error code and a message to the caller program. Note that this procedure
does not have an error handler declaration in the same BEGIN - END block
as the SIGNAL statement. If an error handler is declared in the same BEGIN -

END block as the SIGNAL statement, the SIGNAL statement invokes the error
handler and you need to issue the RESIGNAL statement in the error handler
to return the specified error code and message. For more details about
SIGNAL and RESIGNAL statements, see the SQL Reference, SC09-2974.

3. After checking the existence, you need to describe an error handler for
error handling of other statements (the OPEN statement in this example)
although this example does not have an error check routine here to make
the example simple. You can declare one error handler for each BEGIN ...

END block.

7.8.2.2 Using parameters
To send and receive data between the caller and the stored procedure, you
can use parameters for a stored procedure. Parameters are defined in the
CREATE PROCEDURE statement as the following:

In Sybase:

CREATE PROCEDURE showtable_sp @tabname VARCHAR(18) ...

In DB2:

CREATE PROCEDURE showtable_sp(IN v_tabname VARCHAR(18))...

If a stored procedure with parameters has been created, you need to specify
the parameter in the CALL statement to execute the procedure in DB2 UDB.

In Sybase you can use the EXEC statement to execute a stored procedure
having parameters. You can execute the EXEC statement without specifying
parameter if the parameter definition in the CREATE PROCEDURE statement
defines the default value. For example, if you have a stored procedure defined
as follows:

CREATE PROCEDURE proc1 @var1 CHAR(1)= ‘A’ ...
174 DB2 UDB V7.1 Porting Guide

Then the following two statements have the same meaning:

EXEC proc1
EXEC proc1 ‘A’

In DB2, you cannot omit the parameter from the CALL statement if the stored
procedure has a parameter. Here is a simple example:

CALL proc1(‘A’)

In DB2 UDB, you can change values of the parameters declared as OUT

parameters, but you cannot change values of the parameters declared as IN

parameters. If you want to change the values of the variables declared as IN

parameters, you should specify the INOUT parameter option. In Sybase, you
can change parameter variables of stored procedures if the parameter is not
explicitly defined as an OUT parameter.

When you want to set a value to a variable in a stored procedure, you need to
describe a statement like ‘select @var = value’ in Sybase and ‘set var =

value’ in DB2 UDB.

7.8.2.3 Conversion of a simple procedure with one result set
This example shows a simple stored procedure that executes a SELECT

statement and returns an answer set.

Source in Sybase:

create procedure prc_read_table
as

declare @ret_code int
select @ret_code = 0
select * from table01
if @@error != 0

select @ret_code = @@error
return @ret_code

To DB2 UDB:

CREATE PROCEDURE prc_read_table()
RESULT SET 1 LANGUAGE SQL (1)
BEGIN (2)

DECLARE SQLCODE INTEGER default 0;
DECLARE var_SQLCODE INTEGER default 0;
DECLARE Cur1 CURSOR WITH HOLD WITH RETURN (3)

FOR SELECT *
FROM table01;

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION,SQLWARNING,NOT FOUND
SET var_SQLCODE = SQLCODE;
Chapter 7. Application conversion 175

OPEN Cur1; (4)
RETURN(var_SQLCODE);

END

1. A LANGUAGE SQL statement must be specified for an SQL stored procedure.
The RESULT SET statement exists for the family compatibility.

2. The SQL stored procedure body has to be enclosed by BEGIN and END.

3. You must have a WITH RETURN option in order to pass a result set back from
the cursor.

4. You need to open the cursor that was declared by a DECLARE CURSOR

statement to return a result set.

As in the example above, you need to declare and open a cursor, and then
leave it open to return a result set to the caller.

In DB2 UDB, if want to execute this stored procedure in your application
program, you need to use ODBC/CLI/JDBC interface. If you use embedded
SQL interface, you cannot get the result set from the stored procedure;
however, you can execute CLI statements in your embedded SQL program to
get the result set from the stored procedure. The example is shown in 7.9.6,
“Executing a stored procedure” on page 207.

You can also get the result set by executing the CALL statement from the DB2
command line processor.

Within a BEGIN ... END block of an SQL stored procedure in DB2 UDB Version
7.1, you must put statements as the following order:

• Variables declaration

• DECLARE CURSOR statements

• Error handler declaration

• SQL procedure statements

If you put DECLARE CURSOR statements after a handler declaration, you will get
the error ‘SQL0104N An unexpected token "<cursor declaration>" was found

following "".’.

7.8.2.4 Conversion of procedure with multiple result sets
This example shows a stored procedure that executes two SELECT statements
and returns two answer sets.

In Sybase:

create procedure prc_read_tables(@srvr_nm varchar(40))
176 DB2 UDB V7.1 Porting Guide

as
declare @ret_code int
select @ret_code = 0
select * from table01 where col01 = @srvr_nm (1)
if @@error != 0

select @ret_code = @@error
select * from table02 where col01 = @srvr_nm (2)
if @@error != 0

select @ret_code = @@error
return @ret_code (3)

1. Executes SELECT statements for the first result set.

2. Executes SELECT statements for the second result set.

3. Returns an error code.

In DB2 UDB:

create procedure prc_read_tables(v_srvr_nm varchar(40))
result set 2 language SQL
begin

declare SQLCODE INTEGER default 0;
declare var_SQLCODE INTEGER default 0;
declare ret_code INTEGER default 0;

DECLARE C1 cursor with hold with return (1)
FOR select * from table01 where col01 = v_srvr_nm;

DECLARE C2 cursor with hold with return (2)
FOR select * from table02 where col01 = v_srvr_nm;

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION,SQLWARNING,NOT FOUND
SET var_SQLCODE = SQLCODE;

open C1; (3)
if(var_SQLCODE <> 0) then

set ret_code = var_SQLCODE;
end if;
set var_SQLCODE = 0; (4)
open C2; (5)
if(var_SQLCODE <> 0) then

set ret_code = var_SQLCODE;
end if;
return(ret_code); (6)

END

1. Declares cursors for the first result set.

2. Declares cursors for the second result set.

3. Opens declared cursor for the first result set.

4. Sets the user variable of SQLCODE to 0 before executing SQL statement.
Chapter 7. Application conversion 177

5. Opens declared cursor for the second result set.

6. Returns an error code.

Note that two cursors are declared, opened, and left open.

7.8.2.5 Conversion of procedure with a single row
Both Sybase and DB2 have the SELECT statement to retrieve a value from the
table and save it into a variable. However, the behavior is different when the
SELECT statement returns more than one value.

This is an example of the stored procedure using the SELECT statement in
Sybase:

create procedure prc_single(@col01 char(5),@col02 char(5) out)
as

select @col02 = col02 from table01 where col01 = @col01

If the result set of this statement has only 1 row, you can convert the stored
procedure as following in DB2 UDB:

create procedure prc_single(IN v_col01 char(5),OUT v_col02 char(5))
language sql
BEGIN

SELECT col02 into v_col02 from table01 where col01=v_col01;
END

If the result set has more than 1 row, Sybase will set the last value in the
result set to the variable @col02; however, in DB2 UDB, the SELECT statement
will fail with the error code SQL0811N, because the SELECT...INTO statement
allows only one row to be returned.

If you want to create a stored procedure which has the same behavior as the
Sybase stored procedure, you need to use a cursor and return the last
fetched data to the caller. See the following stored procedure:

create procedure prc_single2(IN v_col01 char(5),OUT v_col02 char(5))
language sql
BEGIN

DECLARE v_col01 char(5);
DECLARE SQLCODE INTEGER default 0;
DECLARE v_SQLCODE INTEGER default 0;
DECLARE c1 CURSOR -- Declare Cursor

FOR SELECT col02 FROM table01 where col01=v_col01;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION,SQLWARNING,NOT FOUND

set v_SQLCODE = SQLCODE; -- For error handling
OPEN c1; -- Open Cursor
fetch_loop:
178 DB2 UDB V7.1 Porting Guide

LOOP
FETCH c1 INTO v_col02; -- Fetch each 1 row
IF(v_SQLCODE = 100) then -- Check the end of data

LEAVE fetch_loop;
END IF;

END LOOP;
CLOSE c1; -- Close Cursor

END

When the last FETCH statement is executed, the variable ‘v_col02’ is set to the
last value in the result set.

7.8.2.6 Conversion of a procedure which calls another procedure
Both Sybase and DB2 UDB support nested stored procedures. There are
some differences in the usages of cursors between Sybase and DB2 UDB.
You can use cursors to manipulate result sets of SELECT statements both in
Sybase and DB2 UDB. In Sybase, when a cursor is defined in a stored
procedure or an user program, the called stored procedure or trigger can
access the cursor. See the example in Figure 31.

Figure 31. Cursor scopes in Sybase

The caller program can access the cursor c1 that is declared in the program,
but cannot access the other cursors (c2 and c3). The Stored procedure proc1

can access the cursors (c2 and c1) that are declared in the same stored
procedure and the caller program, but cannot access the cursor c3. The
stored procedure proc2 can access the cursors c3, c2, and c1.

In DB2 UDB, the called stored procedure cannot access the cursor that was
defined in the caller program. But the caller program or stored procedure can
access the cursor that was defined in the called stored procedure. See the
examples shown in Figure 32.

Caller Program
declare cursor c1

Stored procedure : proc1
declare cursor c2

exec proc2
........

........
exec proc1

Stored procedure : proc2
declare cursor c3

c1,c2,c3 available

........

only c1 available

c1,c2 available
Chapter 7. Application conversion 179

Figure 32. How to get cursor from stored procedure in DB2 UDB

The caller program can access the cursor c1 and c2. The cursor c3 is available
to the caller program when the cursor is defined with RETURN TO CLIENT option
in the called stored procedure proc2. The cursor c3 is available in the
procedure proc1when the cursor is defined with RETURN TO CALLER option in the
called stored procedure proc2. The cursor c2 can be accessed by the caller
program with either RETURN TO CLIENT or RETURN TO CALLER option.

The caller stored procedure proc1 can access the cursor c3 declared and
opened in the called stored procedure proc2 with a result set locator. You
have to use the ALLOCATE CURSOR and ASSOCIATE RESULT SET LOCATOR statements
to access the cursor which open in the called stored procedure as the
following example:

DECLARE loc1 RESULT_SET_LOCATOR VARING; --Declare a result set locator
.....
CALL proc2;
ASSOCIATE RESULT SET LOCATORS loc1 WITH PROCEDURE proc2;

--Associate the locator to the procedure
ALLOCATE c3 CURSOR FOR RESULT SET loc1;

--Allocate the cursor with the locator
FETCH c3 INTO var1; --Fetch the cursor

Simulating the Sybase behavior
If you need to access the cursor that is defined in the caller program (or
stored procedure) from the called stored procedure like you do in Sybase, you
cannot meet the requirement with those statements such as ALLOCATE CURSOR

Caller Program
declare cursor c1 Stored procedure : proc1

declare cursor c2

exec proc2
........

........
exec proc1

Stored procedure : proc2
declare cursor c3

only c3 available

WITH RETURN TO CLIENT;

c1,c2,c3 available
c2 available

Caller Program
declare cursor c1 Stored procedure : proc1

declare cursor c2

exec proc2
........

........
exec proc1

Stored procedure : proc2
declare cursor c3

only c3 available
c1,c2 available

c2,c3 available

or

........

........
WITH RETURN TO CALLER;
180 DB2 UDB V7.1 Porting Guide

and ASSOCIATE RESULT SET LOCATOR. Instead you can use a declared temporary
table to implement the same functionality. When you define a declared
temporary table in the caller program, the called stored procedure can access
the declared temporary table. See Figure 33.

Figure 33. Simulate Sybase cursor in DB2 UDB

In this example, the result set of the SELECT statement in the stored procedure
proc1 is passed to the called stored procedure proc2 using a declared
temporary table.

Note that the stored procedure proc2 has a dummy DECLARE GLOBAL TEMPORARY

TABLE statement to avoid getting an error when creating this procedure. If you
do not put in this statement, you will get an error when executing an SQL
statement accessing the temporary table. In DB2 UDB Version 7.1, if you
want to access the declared temporary table that are declared by the other
program or procedure, you need to describe like this.

7.8.2.7 Conversion of procedure with save points
Between Sybase and DB2 UDB, the transaction models are different. Sybase
supports nested transactions whereas DB2 UDB does not. For example, if
you have an application program that calls a stored procedure, the program
can start a transaction that calls the stored procedure, and a new transaction
can be started by the stored procedure within the transaction that the caller
program has started. Then you can use the COMMIT statement for the
transaction that is started in the stored procedure.

In DB2 UDB, if you issue the COMMIT statement in the called stored procedure,
all changes made in the stored procedure and the caller program will be
committed.

Stored procedure : proc1

......
declare global temporary table t1

Stored procedure : proc2
if(1 = 0) then

insert into session.t1 select * from tab
......
exec proc2

temporary table session.t1 available

end if
declare global temporary table t1

........
Chapter 7. Application conversion 181

Both Sybase and DB2 UDB support save points to control transactions. See
the Sybase example shown in Figure 34. This example does not have a save
point.

Figure 34. Case 1: No save point in a Sybase stored procedure

In this example, the ROLLBACK statement in the stored procedure proc1 will roll
back all the changes made in the transaction started by the stored procedure,
as well as all the changes made in the transaction started in the caller
program. To roll back only the transaction started by the stored procedure,
you should use a save point in the stored procedure. See the following
Sybase example shown in Figure 35.

Figure 35. Case 2: A save point in a Sybase stored procedure

In this example, the ROLLBACK statement in the stored procedure proc1 can roll
back only the transaction started in this procedure by specifying the save
point name.

If a BEGIN TRAN statement is not used in the caller program, each SQL
procedure will be executed with the auto-commit mode in the caller program.

Caller Program
BEGIN TRAN
some SQLs
............
exec proc1

Stored procedure : proc1
BEGIN TRAN

............

COMMIT TRAN
.............

ROLLBACK TRAN
if (ERROR)
...... SQLs

COMMIT TRAN

Caller Program
BEGIN TRAN
some SQLs
............
exec proc1

Stored procedure : proc1
BEGIN TRAN
SAVE TRAN S1............

COMMIT TRAN
.............

ROLLBACK TRAN S1
if (ERROR)
...... SQLs

COMMIT TRAN
182 DB2 UDB V7.1 Porting Guide

In that case, the save point does not need to be put in the called stored
procedure, because either a COMMIT statement or a ROLLBACK statement will
affect the transaction within the stored procedure only.

In DB2 UDB, you can also use save points in a stored procedure for the same
purpose as Sybase. In DB2 UDB, a transaction starts implicitly when an SQL
statement (SELECT, UPDATE, DELETE, and so on) is executed. See the DB2
example shown in Figure 36.

Figure 36. A save point in a DB2 UDB stored procedure

This example has a program calling a stored procedure. In this example, if
you want to roll back the SQL statements executed within the stored
procedure only, you should set a save point (in this example, S1). If the called
stored procedure does not have a save point, executing the ROLLBACK

statement will roll back all the changes both in the caller program and the
stored procedure.

As described before, DB2 does not support nested transaction. Thus, we
recommend to put the COMMIT statement in the caller program, not in the called
stored procedure. If you issue the COMMIT statement at the end of this stored
procedure, the commit statement will commit not only the changes in the
caller program but also the changes in the stored procedure. That means the
caller program cannot control the transaction which is started by itself. To
avoid this situation, you should commit or roll back transactions in the caller
program. In stored procedures, use the SAVEPOINT and the ROLLBACK SAVEPOINT

statements.

We discussed save points in 7.5, “Save point” on page 147. The following
example shows the use of save point in Sybase:

create proc prc_sptest()
as

Caller Program
start implicit transaction
some SQLs
............
call proc1

Stored procedure : proc1
SAVEPOINT S1

............

.............
ROLLBACK TO SAVEPOINT S1

if (ERROR)
...... SQLs

COMMIT
Chapter 7. Application conversion 183

declare @saverr int;
select @saverr = 0;

begin tran tr_sptest (1)
save tran s_sptest (2)
update table01 set col02=’DDDDD’ where col01=’00002’;
select @saverr = @@error;
if @saverr != 0 (3)

rollback tran s_sptest (4)
commit tran (5)
return @saverr; (6)

This stored procedure start a transaction and have the save point s_sptest. If
the UPDATE statement fails, this procedure rolls back to the save point s_sptest
and then commits the transaction tr_sptest.

1. “begin tran” statement starts a transaction that is named “tr_sptest”

2. “save tran” statement sets a save point named “s_sptest”

3. This statement checks the return code from the UPDATE statement. If the
code is not 0, ROLLBACK statement (4) will be executed.

4. “rollback tran” statement rolls back to the save point “s_sptest”.

5. “commit tran” statement ends the transaction that was started by the
“begin tran” statement (1).

6. This procedure returns an error code to the caller program or procedure.
The caller program or procedure retrieves the error code as follows:

exec @rc_code = prc_sptest;

This example sets the error code from the procedure prc_sptest to a local
variable @rc_code.

We can convert this stored procedure to DB2 UDB as the following example:

create procedure prc_sptest()
language sql
begin (1)

declare saverr int;
declare SQLCODE int;
declare continue handler for sqlexception,sqlwarning,not found (2)

set saverr = SQLCODE;
set saverr = 0;
savepoint s_sptest on rollback retain cursors; (3)

update table01 set col02='DDDDD' where col01='00002';
if (saverr <> 0) then (4)

rollback to savepoint s_sptest;
end if;
return saverr; (5)
184 DB2 UDB V7.1 Porting Guide

end

1. This begin statement means only the beginning of an SQL block. This
does not mean beginning a transaction. In DB2 UDB, a transaction starts
automatically when the UPDATE statement is executed in this procedure.

2. If an error occurs, this statement sets saverr variable to the value of
SQLCODE.

3. This statement sets a save point named s_sptest.

4. This statement checks the error code. If the code is not 0, this executes
the ROLLBACK TO SAVEPOINT statement.

5. This procedure returns an error code to the caller program. If the caller is
a stored procedure, you can get the error code from the called procedure
as follows:

CALL prc_sptest();
GET DIAGNOSTICS <variable> = RETURN_STATUS;

See the details in 7.9.6, “Executing a stored procedure” on page 207 for the
method to get the error code when you call the stored procedure from a
embedded SQL program.

7.8.2.8 Conversion example that treats DATETIME data
In our customer database, we had an example treating DATETIME data.
Sybase has a DATETIME data type that includes year, month, day, time, and
millisecond. DB2 UDB has a TIMESTAMP data type that includes year, month,
day, time, and microsecond. That DATETIME data type in Sybase can be
converted to a TIMESTAMP data type in DB2 UDB; however, their formats are
different as discussed in 4.2.3, “Datetime data type” on page 45 and we
needed to take it as a consideration.

Here is the source stored procedure in Sybase. The data type of the column
col03 is DATETIME:

create procedure dateproc1 (
@var_col01 char(10) = "%" (1)

)as
select col01, count(col01), col02, convert(char (12), col03)
from table01
where col01 like @var_col01
group by col01, col02, convert(char (12), col03), (2)
datepart(weekday,col03)
order by col01,datepart(weekday,col03)

1. The input parameter is defined with the default value ‘%’.
Chapter 7. Application conversion 185

2. The CONVERT function extracts the year, month, and day part of the DATETIME

data.

The following code is the converted stored procedure for DB2:

CREATE PROCEDURE dateproc1(IN var_col01 CHAR(10))
RESULT SETS 1 LANGUAGE SQL
BEGIN NOT ATOMIC

DECLARE v_temp_SQLCODE INT DEFAULT 0; (1)
DECLARE SQLCODE INT;
DECLARE cur1 CURSOR WITH HOLD WITH RETURN (2)

FOR SELECT col01,count(col01),col02,CHAR(date(col03)) (3)
FROM table01
WHERE col01 LIKE var_col01
GROUP BY col01,col02,CHAR(date(col03)),DAYOFWEEK(col03)
ORDER BY col01,DAYOFWEEK(col03);

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION,SQLWARNING,NOT FOUND
SET v_temp_SQLCODE = SQLCODE;

OPEN cur1; (4)
END

1. These variables are declared for error handling.

2. Declaration of a cursor to return a result set. A “WITH HOLD” option will keep
the cursor open after COMMIT is issued. A “WITH RETURN” is also needed to
return a result set.

3. In Sybase, CONVERT(CHAR(12),datetime) returns year, month, and day in the
format like ‘Aug 28 2000’. In DB2 UDB, you can use the DATE function to
return year, month, and day. Note that the format will be like ‘08/28/2000’.

4. To return a result set, the cursor has to be opened.

Note that with in a begin-end block, a cursor declaration must be done before
the error handler declaration as described in “Conversion of a simple
procedure with one result set” on page 175.

7.8.2.9 Conversion example of SET ROWCOUNT
The next example has also been found in our customer database. This
example uses the SET ROWCOUNT statement which limits a number of rows that
the DELETE statement processes. The reason for limiting a number for deleted
rows is to prevent the transaction log space from getting full. In this example,
the DELETE statement deleting 1000 rows is repeatedly executed with the
auto-commit mode until all the rows which meets the specified condition is
deleted. Here is the source Sybase stored procedure:

create procedure procdel
as
186 DB2 UDB V7.1 Porting Guide

declare @ret_day int,
@del_count int

select @del_count = 0

select @ret_day = convert(int,col01) * -1 (1)
FROM dbo.table02
where col02 = 'RET_DATE'
and col03 = @@servername

set rowcount 1000 (2)
declare @save_count int
set nocount on

while (1=1)
begin

DELETE FROM dbo.table03
WHERE col01 < dateadd(dd,@ret_day,getdate()) (3)

select @save_count = @@rowcount (4)
select @del_count = @del_count + @save_count
if @save_count < 1000

break
end

select 'Daily rows deleted',@del_count (5)

1. This SELECT statement gets the value for the retention date.

2. This statement sets the maximum number of the rows that are processed
by the following SQL statement.

3. This DELETE statement deletes 1000 rows at a time as a maximum.

4. In Sybase, you can input a value to a variable using the SELECT statement
like this. The @@rowcount shows a number of rows that are deleted by
the DELETE statement (3).

5. The message and the number of the deleted rows are returned to the
caller by the SELECT statement.

DB2 UDB does not have an equivalent feature to control the number of the
rows being deleted. In your migration project from Sybase to DB2 UDB, if you
have a Sybase stored procedure deleting many rows and using the SET

ROWCOUNT statement to prevent the transaction log space getting full, executing
multiple DELETE statements with a different condition, and increasing the
transaction log space would be a practical method to convert such a
procedure. See the following converted example of the DB2 stored
procedure:
Chapter 7. Application conversion 187

CREATE PROCEDURE procdel()
RESULT SETS 1 LANGUAGE SQL
BEGIN

DECLARE v_temp_SQLCODE INT DEFAULT 0;
DECLARE SQLCODE INT;
DECLARE v_ret_day INT;
DECLARE v_del_count INT;
DECLARE v_rowcount INT;
DECLARE cur1 CURSOR WITH HOLD WITH RETURN (1)

FOR WITH temptable(col1, col2) AS (VALUES ('Daily rows deleted',
V_del_count))
SELECT * FROM temptable;

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION,SQLWARNING,NOT FOUND
BEGIN NOT ATOMIC

SET v_temp_SQLCODE = SQLCODE;
END;

SET v_del_count = 0;
SET v_temp_SQLCODE = 0;
SELECT CAST(col01 AS INT) * -1 INTO v_ret_day

FROM table02
WHERE col02 = 'RET_DATE' AND col03 = CURRENT SERVER;

SET v_temp_SQLCODE = 0;
DELETE FROM table03 (2)

WHERE col01 < (v_ret_day DAYS+(CURRENT DATE) -5);
GET DIAGNOSTICS v_rowcount = ROW_COUNT; (3)
SET v_del_count = v_del_count + v_rowcount;
SET v_temp_SQLCODE = 0;
DELETE FROM table03

WHERE col01 < (v_ret_day DAYS+(CURRENT DATE));
GET DIAGNOSTICS v_rowcount = ROW_COUNT;
SET v_del_count = v_del_count + v_rowcount;

OPEN cur1; (4)
END

1. The SELECT statement returning the message and the value in Sybase can
be converted into a cursor in DB2 UDB. Here the cursor is declared using
the SELECT statement with the WITH clause. The cursor is opened by the
OPEN statement.

Note: You can also use stored procedure parameters to return values to
the caller.

2. The DELETE statement is executed. In this example, the DELETE statement is
executed twice.
188 DB2 UDB V7.1 Porting Guide

3. “GET DIAGNOSTICS <variable>=ROW_COUNT” statement shows a number of rows
that are processed by the DELETE statement. We have discussed this
statement in 7.6.5, “The @@rowcount global variable” on page 154.

Since the source Sybase stored procedure does not have any error checking
routines, we did not put any of them in the converted stored procedure either,
although the error handler sets a negative value to the variable v_temp_SQLCODE

if any error occurs. You can check the variable v_temp_SQLCODE if you want to
add an error check routine.

If you really want to create a stored procedure which behaves in the same
way as the source Sybase stored procedure, which use the SET ROWCOUNT

statement and delete 1000 rows each time, you can use a cursor using the
SELECT FOR UPDATE and execute DELETE CURRENT OF Cursor statements.

In the following procedure, we use a SELECT FOR UPDATE statement and a DELETE

CURRENT OF Cursor statement to delete 1000 rows each time.

CREATE PROCEDURE procdel()
RESULT SETS 1 LANGUAGE SQL
BEGIN NOT ATOMIC
DECLARE v_temp_SQLCODE INT DEFAULT 0;
DECLARE SQLCODE INT;

DECLARE v_ret_day INT;
DECLARE v_del_count INT;
DECLARE v_rowcount INT;
DECLARE v_col01 INT;

DECLARE cur1 CURSOR WITH HOLD WITH RETURN
FOR WITH temptable(col1, col2) AS (VALUES ('Daily rows deleted',

v_del_count))
SELECT * FROM temptable;

DECLARE cur2 CURSOR WITH HOLD (1)
FOR SELECT col01 FROM test03

WHERE col01 < (v_ret_day DAYS+(CURRENT TIMESTAMP))
FOR UPDATE;

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION,SQLWARNING,NOT FOUND
BEGIN NOT ATOMIC
SET v_temp_SQLCODE = SQLCODE;
END;

SET v_del_count = 0;
SET v_temp_SQLCODE = 0;
SELECT CAST(col01 AS INT) * -1 INTO v_ret_day

FROM test02
WHERE col02 = 'RET_DATE' AND col03 = CURRENT SERVER;

SET v_temp_SQLCODE = 0;
Chapter 7. Application conversion 189

SET v_rowcount=0;
OPEN cur2;
L_Label:
WHILE (1 = 1)
DO

FETCH cur2 INTO v_col01; (2)
DELETE FROM test03 WHERE current of cur2; (3)
SET v_rowcount = v_rowcount + 1; (4)
IF MOD(v_rowcount,1000) =0 THEN (5)

COMMIT WORK;
END IF;
IF v_temp_SQLCODE <> 0 THEN

SET v_del_count = v_rowcount;
COMMIT WORK;
Leave L_Lavel;

END IF;
END WHILE L_Label;
OPEN cur1;
COMMIT WORK; (6)
CLOSE cur2;

END

1. In this SELECT FOR UPDATE statement, we need to use a WITH HOLD option to
retain the cursor opened after a COMMIT statement.

2. The FETCH statement moves the position of the current cursor to the next
row.

3. The DELETE statement deletes 1 row where the current cursor is placed.

4. The v_rowcount value counts a number of rows that are deleted.

5. For each 1000 rows deleted, the COMMIT statement is executed.

7.8.2.10 Conversion example of declared temporary tables
This example using a local temporary table is also from our customer
database. As already described, you can create a temporary table using the
DECLARE GLOBAL TEMPORARY TABLE statement in DB2 UDB.

This stored procedure returns a result set consisting of two columns. One is
the words extracted from the column col01 of the table table04 and the other
column is the sequential number beginning with 1. The column col01 of the
table table04 stores multiple words delimited by comma in a row. This stored
procedure picks up each word from the beginning using the CHARINDEX,
SUBSTRING, and the STUFF function

Here is the source stored procedure in Sybase:

create procedure proctemp (
190 DB2 UDB V7.1 Porting Guide

@parm01 char(10)
)
as
declare @list varchar(255)
declare @tmp_list varchar(255)
declare @offset smallint
declare @v_word varchar(30)
declare @v_word_num smallint

create table #temptable (work char(10),word_num smallint) (1)
select @v_word_num = 1

select @list = col01 from table04 where col02 = @parm01
while (@list != '')
begin
select @offset = charindex(",", @list) (2)
if @offset > 0

begin
select @v_word = substring(@list, 1, @offset-1) (3)
insert #temptable select @v_word, @v_word_num (4)
select @tmp_list = stuff(@list, 1, @offset, NULL) (5)
select @list = @tmp_list
select @v_word_num = @v_word_num + 1

end
else

begin
insert #temptable select @list, @v_word_num (6)
select @list = ''

end
end

select * from #temptable (7)

1. This statement creates a local temporary table named #temptable.

2. The CHARINDEX function returns the position of the first comma character.
This function should be converted to the LOCATE or POSSTR function in DB2
UDB.

3. This statement picks up the first word using the SUBSTRING function. It
should be converted to the SUBSTR function in DB2 UDB.

4. This statement inserts the extracted word and the sequential number into
the local temporary table.

5. The word which has already been inserted into the local temporary table is
eliminated from the list by this statement using the STUFF function. This
function should be converted to a INSERT function in DB2 UDB.
Chapter 7. Application conversion 191

6. The last word is inserted into the local temporary table.

7. The content of the local temporary table is returned to the caller.

The following code is converted stored procedure for DB2.

CREATE PROCEDURE proctemp(IN parm01 CHAR(10))
RESULT SETS 1 LANGUAGE SQL
BEGIN NOT ATOMIC

DECLARE v_temp_SQLCODE INT DEFAULT 0;
DECLARE SQLCODE INT;
DECLARE v_list VARCHAR(255);
DECLARE v_tmp_list VARCHAR(255);
DECLARE v_offset SMALLINT;
DECLARE v_word VARCHAR(30);
DECLARE v_word_num SMALLINT;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION,SQLWARNING,NOT FOUND

SET v_temp_SQLCODE = SQLCODE;
DECLARE GLOBAL TEMPORARY TABLE SESSION.temptable ((1)

word CHAR(10) NOT NULL,
word_num SMALLINT NOT NULL)
NOT LOGGED WITH REPLACE ON COMMIT PRESERVE ROWS;

SET v_word_num = 1;
SET v_temp_SQLCODE = 0;
SELECT col01 INTO v_list FROM table04 WHERE col02 = parm01;
WHILE (v_list <> '')
DO

SET v_offset = LOCATE(',', v_list) ; (2)
IF v_offset > 0 THEN

SET v_word = SUBSTR(v_list, 1, v_offset - 1); (3)
SET v_temp_SQLCODE = 0;
INSERT INTO SESSION.temptable VALUES (v_word, v_word_num);
VALUES(INSERT(v_list,1,v_offset,’’)) INTO v_tmp_list; (4)
SET v_list = v_tmp_list;
SET v_word_num = v_word_num + 1;

ELSE
SET v_temp_SQLCODE = 0;
INSERT INTO SESSION.temptable VALUES (v_list, v_word_num);
SET v_list = '';

END IF;
END WHILE;
BEGIN

DECLARE cur1 CURSOR WITH HOLD WITH RETURN (5)
FOR SELECT * FROM SESSION.temptable;

OPEN cur1;
END;
192 DB2 UDB V7.1 Porting Guide

1. Create a declared global temporary table. The WITH REPLACE option is used
to override the existing declared global temporary table when you execute
this stored procedure more than once with in a connection. The ON COMMIT

PRESERVE ROWS option is used to keep data in the declared temporary table
after COMMIT statement. The name of this temporary table is
SESSION.temptable.

2. The CHARINDEX function in Sybase is converted into the LOCATE function in
DB2.

3. The SUBSTRING function in Sybase is converted into the SUBSTR function in
DB2.

4. The STUFF function in Sybase is converted into the INSERT function in DB2.
Note that two single quotation without a space (’’) are used to specify
NULL value whereas the STUFF function uses the string NULL in the
Sybase stored procedure. We have discussed this difference in 7.3.1,
“Compatible functions” on page 127.

5. A cursor needs to be declared using the DECLARE CURSOR statement to return
a result set. As discussed in 7.8.2.3, “Conversion of a simple procedure
with one result set” on page 175, you need to put the DECLARE CURSOR

statement before the error handler declaration, and the other SQL
statements have to be put after the error handler declaration within a
BEGIN-END block. In this example, the cursor accesses the declared
temporary table and the table has to have been declared when the cursor
is declared. Thus, you need to put one more BEGIN ... END block in this
procedure to put the cursor declaration.

In this example, the cursor is declared using a static SQL statement. If you
want to use a dynamic SQL statement in a stored procedure, the order of
statements needs to be as follows:

BEGIN
DECLARE str_stmt
.....
DECLARE CURSOR C1 FOR STMT1;
.....Declare error handler, Other statements
.....
SET str_stmt = ‘SELECT statement’;
PREPARE STMT1 FROM str_stmt;
OPEN C1;

END
Chapter 7. Application conversion 193

7.8.3 DB2 Stored Procedure Builder
DB2 UDB comes with the Stored Procedure Builder (SPB), a graphical
application to aid in rapid development of stored procedures. SPB can
provide a single development environment of the stored procedure, which
means SPB can be used to build stored procedures for the entire DB2 family
ranging from the Windows workstation to System/390 whether those
procedures are created on local or remote server.

SPB comes with design assistants that guide you through basic design
patterns, help you create SQL queries, and estimate the performance cost of
invoking a stored procedure. SPB also helps you in registering and testing
stored procedures. Therefore, you can focus on creating your stored
procedure logic rather than the details of registering, building, and installing
stored procedures on a DB2 server.

On a Windows workstation, SPB can be started by clicking Start and
selecting Programs -> IBM DB2 -> Stored Procedure Builder, clicking the
SPB icon from the Control Center, or entering db2spb at a command prompt.
SPB can be also started as an add-in tool from Microsoft Visual Basic or
Microsoft Visual C++. On a UNIX workstation such as RS/6000, you can start
SPB by entering db2spb at a command prompt, or clicking the SPB icon from
the Control Center.

When you start SPB, you are prompted to specify the characteristics of a new
project or open an old project. A project stores the database name to which
the stored procedures connect to, userid, and password, and so on. Stored
procedures are created in the project.
194 DB2 UDB V7.1 Porting Guide

Once you open a project, you are ready to build a new stored procedure.
Right-click on the Stored Procedures folder which can be seen under a
database folder, and select Insert. You can specify whether the language of
the procedure is Java or SQL, as shown in Figure 37.

Figure 37. Stored Procedure Builder: inserting a new procedure
Chapter 7. Application conversion 195

In our example, we are creating an SQL stored procedure using the wizard.
You should just enter the prompted information. SPB requests you to enter
the procedure name, SQL statements, input/output parameters, and so on.
Figure 38 shows the page specifying SQL statements. You can directly enter
the SQL statements, or use the SQL Assistant, which is a wizard to create
SQL statements.

Figure 38. Stored Procedure Builder: using the wizard
196 DB2 UDB V7.1 Porting Guide

When you have entered all prompted information, click the Finish button, and
SPB generates the stored procedure code. Figure 39 shows the generated
SQL stored procedure.

Figure 39. Stored Procedure Builder: generated procedure

The generated procedure code can be modified as you like before building
the stored procedure. If you prefer either the vi or emacs editor, open the
Environment Properties window from the File menu and set the Editor option.

To build the stored procedure and register to the database, click the Build
icon from the icon bar.
Chapter 7. Application conversion 197

If the building phase is completed successfully, you can test the stored
procedure. Click the Run icon from the icon bar, and enter the input
parameter values if necessary. You will see the test results as in the following
example (Figure 40):

Figure 40. Stored Procedure Builder: testing a procedure
198 DB2 UDB V7.1 Porting Guide

If you specify to use Java for the stored procedure in the selection shown in
Figure 37 on page 195, the Java procedure using SQLJ or JDBC can be
generated by SPB. Figure 41 shows a Java stored procedure using JDBC.

Figure 41. Stored Procedure Builder: generated Java procedure

7.9 Embedded SQL program conversion

This section discusses the conversion of embedded SQL programs from
Sybase to DB2 UDB. These conversion topics are divided into the following
sections:

• Statements comparison
• Connection
• Transaction
• Select statement
• Simple example
• Execute stored procedure
• SQLCA and SQLDA structure
Chapter 7. Application conversion 199

7.9.1 Statements comparison
In both Sybase and DB2 UDB, almost of all the SQL statements are
supported in embedded SQL programs. But some of Sybase’s SQL
statements are not supported in DB2 UDB. Table 28 shows the embedded
SQL statement comparison between Sybase and DB2 UDB. Table 28 also
shows which sections in this chapter you can refer to for more details.

Table 28. Embedded SQL statements comparison

Sybase DB2 UDB Related
sections

Description

begin declare section begin declare section declare host variables
used in a program

begin transaction N/A 7.9.3 begin an explicit
transaction

close close close a cursor

commit commit 7.9.2 ,
7.9.3

commit changes

connect connect 7.9.2 connect to server
(connect to database for
DB2)

deallocate cursor N/A deallocate cursor

deallocate prepare N/A deallocate a prepared
statement

declare cursor
(dynamic/static)

declare cursor declare a cursor with
SQL statements

declare cursor
(stored procedure)

N/A 7.9.6 declare cursor with a
stored procedure

delete
(positioned /
searched)

delete execute DELETE
statement

describe input
(SQLDA)

describe into 7.9.8 get information about
parameter markers in a
dynamic SQL statement

describe output
(SQLDA)

describe into 7.9.8 get row format
information about the
result set of a dynamic
SQL statement
200 DB2 UDB V7.1 Porting Guide

disconnect disconnect 7.9.2 disconnect from server
(disconnect from
database for DB2)

exec call execute stored
procedure

exec sql exec sql Marks the beginning of
an SQL statement

execute execute executes a dynamic
SQL statement from a
prepared statement

execute immediate execute immediate executes a dynamic
SQL statement

exit N/A close Client-Library and
deallocates Embedded
SQL resources

fetch fetch execute FETCH
statement

get diagnostics N/A retrieves error or
warning messages from
Client-Library

include “filename” include ‘filename’ include an external file

include sqlca include sqlca 7.9.7 define SQLCA

include sqlda include sqlda 7.9.8 define SQLDA

initialize_application N/A generate a call to set the
application name

open
(dynamic / static)

open open a cursor

prepare prepare declare a name for a
dynamic SQL statement

rollback rollback 7.9.2 ,
7.9.3

execute ROLLBACK
statement

select select 7.9.4 execute SELECT
statement

Sybase DB2 UDB Related
sections

Description
Chapter 7. Application conversion 201

SQL Descriptor
Sybase has two descriptors to store a description of the variables used in a
prepared dynamic SQL statement. One is an SQL descriptor, and the other is
an SQLDA. Since DB2 UDB has only SQLDA as a descriptor, if SQL
descriptors are used in your Sybase programs, you need to convert the SQL
descriptors to SQLDAs in DB2 UDB. The following statements are used for
SQL descriptor in Sybase.

• allocate descriptor
• deallocate descriptor
• describe input (SQL descriptor)
• describe output (SQL descriptor)
• get descriptor
• set descriptor

7.9.2 Connection
Between Sybase and DB2 UDB, the meaning of a connection is different. In
Sybase, a connection is established to a server, not to a database. After
connecting to a server, the program can access the database objects with 3
parts name like ‘database_name.owner_name.object_name’ or the USE

database statement. In DB2 UDB, a connection is established to a database.
The informations of servers and databases are defined in node directory and
database directory in DB2 UDB. The syntax of the CONNECT statement is as
follows:

In Sybase:

connect user_name [identified by password] [at connecction_name] [using
server_name]

In DB2 UDB:

connect to database_alias_name [user user_name] [using password]

set connection set connection change the current
connection

update update execute UPDATE
statement

whenever whenever specify an action when
a specific condition

Sybase DB2 UDB Related
sections

Description
202 DB2 UDB V7.1 Porting Guide

In these statements, Sybase has a connection name as a parameter and DB2
UDB does not. Embedded SQL programs in both Sybase and DB2 UDB
support multiple connections although the implementations are different.

In Sybase, you can specify a connection name for each SQL statement as
follows:

exec sql [at connection_name] sql_statements

These SQL statements include the COMMIT and ROLLBACK statements, so you
can issue the COMMIT or ROLLBACK statement for each connection. Sybase
supports multiple connections to a single server or different servers.

In DB2 UDB, when your program connects to multiple databases, you need to
use a type 2 connection in your program. The type 2 connection allows an
embedded SQL program to connect to multiple databases.You can change
the current connection to the others with SET CONNECTION statement, and the
COMMIT and ROLLBACK statements affect all the connections which are
established to the databases. If you need to execute COMMIT or ROLLBACK
statements for each connection individually, you need to develop a
multi-thread embedded SQL program or a CLI (Call Level Interface) program.
For the detailed information, see the Application Development Guide,
SC09-2949.

7.9.3 Transaction
Sybase has unchained mode and chained mode for transactions. In
unchained mode, you need to issue the BEGIN TRANSACTION statements paired
with the COMMIT TRANSACTION or ROLLBACK TRANSACTION statements explicitly to
start and complete a transaction. In chained mode, Sybase starts a
transaction implicitly before the following statements: SELECT, INSERT, UPDATE,
DELETE, OPEN, and EXEC. The chained mode is the default mode in embedded
SQL.

DB2 UDB has only a transaction mode which is equivalent to Sybase’s
chained mode.

In Sybase’s chained mode, a transaction starts implicitly and you cannot
issue the BEGIN TRANSACTION statement; however, you can change the
transaction mode in your program and issue BEGIN TRANSACTION statement.

Some options of the COMMIT and ROLLBACK statements are different between
Sybase and DB2 UDB. These options are as follows:
Chapter 7. Application conversion 203

In Sybase:

COMMIT [transaction | tran | work] [transaction_name]
ROLLBACK [transaction | tran | work] [transaction_name | savepoint_name]

You cannot specify a transaction name in chained mode.

In DB2 UDB:

COMMIT [WORK]
ROLLBACK [WORK] [TO SAVEPOINT savepoint_name]

DB2 UDB does not have a transaction name as a parameter.

7.9.4 Select statement
The SELECT statements in Sybase and DB2 have almost the same
functionality. However, in Sybase, the SELECT statement allows you to retrieve
multiple rows with 1 SELECT statement as follows:

exec sql begin declare section;
CS_CHAR titleid_array [100] [6];

exec sql end declare section;
...
exec sql select title_id into :titleid_array

from titles;

In DB2 UDB, you cannot retrieve multiple rows with one SELECT statement in
an embedded SQL program. When you want to retrieve multiple rows, you
need to use DECLARE, OPEN, and FETCH statements with a cursor.

7.9.5 Example of embedded SQL program
We will show a simple embedded SQL program here. This example program
executes the SELECT ... INTO statement that retrieves 1 row. When you
convert this example to DB2, what you need to do is change the header file,
the CONNECT statement, the USE statement, and the sqlca structure.

You can manipulate multiple rows of data at a time if you use the DB2 Call
Level Interface (CLI).

Note
204 DB2 UDB V7.1 Porting Guide

Here is the Sybase embedded SQL program:

#include <stdio.h>
#include "sybsqlex.h" /* this header file is needed for only Sybase */
exec sql include sqlca;

main(int argc, unsigned char *argv[])
{

exec sql begin declare section; /* definition of host variables */
char username[30];
char password[30];
char servername[30];

char au_id[12];
char phone[13];
short phone_ind;
exec sql end declare section;

if(argc>1){ /* check command option -> au_id */
printf("%s\n",argv[1]);
strcpy(au_id,argv[1]);

}else{return;}
strcpy(username,"sa"); /* set username */
strcpy(password,"pass"); /* set password */
strcpy(servername,"ununbium");/* set servername */
/* connect to server */

exec sql connect :username IDENTIFIED BY :password USING :servername;
if(check_error(sqlca.sqlcode)!=0){

printf("Connection failed\n");
return;

}
exec sql use pubs2; /* select database for only Sybase */
/* execute select statement */
exec sql select phone into :phone:phone_ind from authors
where au_id=:au_id;

if(check_error(sqlca.sqlcode)!=0){
printf("Select statement failed \n");
exec sql disconnect all;
return;

}
if(phone_ind==0){ /* check null indicator */

printf("Phone No. : %d\n",phone);
}else{

printf("not exist\n");
}
exec sql disconnect;

}

Chapter 7. Application conversion 205

check_error(int sqlcode) /* check sqlcode */
{

if(sqlcode!=0){
fprintf(stderr,"\nSQLCODE:%5d \n** %s",
sqlca.sqlcode,sqlca.sqlerrm.sqlerrmc);
return(1);

}else{
return(0);

}
}

Here is the converted embedded SQL program for DB2:

#include <stdio.h>
exec sql include sqlca;

main(int argc, unsigned char *argv[])
{

exec sql begin declare section; /* definition of host variables */
char username[30];
char password[30];
char servername[30];

char au_id[12];
char phone[13];
short phone_ind;
exec sql end declare section;

if(argc>1){ /* check command option -> au_id */
printf("%s\n",argv[1]);
strcpy(au_id,argv[1]);

}else{return;}
strcpy(username,"sa"); /* set username */
strcpy(password,""); /* set password */
strcpy(servername,"ununbium"); /* set servername */
/* connect to server */
exec sql connect to :servername user :username using :password;

if(check_error(sqlca.sqlcode)!=0){
printf("Connection failed\n");
return;

}
/* execute select statement */

exec sql select phone into :phone:phone_ind from authors
where au_id=:au_id;

if(check_error(sqlca.sqlcode)!=0){
printf("Select statement failed \n");
exec sql disconnect all;
return;
206 DB2 UDB V7.1 Porting Guide

}
if(phone_ind==0){ /* check null indicator */

printf("Phone No. : %d\n",phone);
}else{

printf("not exist\n");
}
exec sql disconnect all;

}

check_error(int sqlcode) /* check sqlcode */
{

if(sqlcode!=0){
fprintf(stderr,"\nSQLCODE:%5d \n** %s",
sqlca.sqlcode,sqlca.sqlerrmc);
return(1);

}else{
return(0);

}
}

Note that the CONNECT statement has been changed. In this example, the
check_error function checks the sqlcode, and if the sqlcode is not 0, then
prints the error message. When you want to get the messages from the sqlca,
you need to use the variable sqlca.sqlerrm.sqlerrmc in Sybase,
sqlca.sqlerrmc in DB2 UDB.

7.9.6 Executing a stored procedure
In both Sybase and DB2 UDB, embedded SQL programs can call stored
procedures, but there are some differences between the methods used. The
statement to call a stored procedure is as follows:

In Sybase:

exec [[status_var =] status_value] procedure_name
[([[@param_name =] param_value [out[put]]],...)]
[into :hostvar_1 [:indicator_1] [, hostvar_n [indicator_n,...]]]

or

exec sql declare cursor_name cursor for execute procedure_name
([[@param_name =]:host_var] [,[@param_name =]:host_var]...)

You can get the cursor that is defined in the called stored procedure with this
statement.

In DB2 UDB:
Chapter 7. Application conversion 207

call procedure_name | host_variable
[using descriptor descriptor_name] | ([host_variable,...])

In Sybase, you can use the into option to get data of 1 row from a stored
procedure. In DB2 UDB, you need to use parameters specified as OUT to get
data from a stored procedure.

Return code from stored procedure

In Sybase, you can get a return code from a stored procedure as follows:

exec sql :retstat = get_sum_discount :titleid,:total_discounts out;

In this example, retstat variable is set to return code from the procedure
get_sum_discount.

In DB2 UDB, you can get the return code from stored procedures with
‘sqlca.sqlerrd[0]’. The following example shows how to get the return code:

exec sql get_sum_sidcount(:titldid,:total_discounts);
retstat = sqlca.sqlerrd[0];

Details of SQLCA are in “SQL Communication Area (SQLCA)” on page 210.

Result set from stored procedure

In Sybase, you can get an answer set from a stored procedure in an
embedded SQL program. The following example shows handling an answer
set with the DECLARE CURSOR statement:

exec sql begin declare section;
CS_CHAR b_titleid[7];
CS_CHAR b_tytle[65];
CS_CHAR b_type[13];

exec sql end decalre section;
exec sql include sqlca;
exec sql connect “sa”;
exec sql use pubs2;
/* call stored procedure and declare cursor */
exec sql declare c1 cursor for execute prc_titles(:b_type);
exec sql open c1;
for(;;){

exec sql fetch c1 into :b_titleid,:b_title;
if(sqlca.sqlcode == 100) {break;}
printf(“ %8s %s\n”,b_titleid,b_title);

}
exec sql close c1;
exec sql disconnect all;
208 DB2 UDB V7.1 Porting Guide

Note that the declare cursor statement is executed to declare a cursor for the
answer set from the stored procedure prc_titles.

Here we assume that this embedded SQL program call the following stored
procedure:

create proc prc_titles(@b_type char(12))
as select title_id,title from titles where type=2b_type

DB2 UDB does not support returning answer sets from stored procedures in
embedded SQL programs; however, you can use the CLI interface to get
answer sets from a stored procedure in an embedded SQL program. The
following example shows the use of CLI interface in embedded SQL program:

EXEC SQL INCLUDE SQLCA; /* Declaration of SQLCA */
EXEC SQL BEGIN DECLARE SECTION; /* Host variables definition */

char b_titleid[7],b_title[65],b_type[13];
EXEC SQL END DECLARE SECTION;
SQLHANDLE henv,hdbc,hstmt; /* handles */
SQLCHAR * stmt =(SQLCHAR *)"CALL prc_titles(?)";/* SQL statement */
SQLRETURN clirc = SQL_SUCCESS;
SQLSMALLINT numCols;
EXEC SQL CONNECT to sample user db2inst1 using db2inst1;/*Connect*/
/* ============== start of CLI program =================== */
SQLAllocHandle(SQL_HANDLE_ENV,SQL_NULL_HANDLE,&henv); (1)
SQLAllocHandle(SQL_HANDLE_DBC,henv,&hdbc);
SQLConnect(hdbc,NULL,SQL_NTS,NULL,SQL_NTS,NULL,SQL_NTS); (2)
SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt) ;
SQLPrepare(hstmt, stmt, SQL_NTS); (3)
strcpy(b_type,"trad_cook");
SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, (4)

SQL_C_CHAR,0, 0, b_type, 0, NULL);
SQLExecute(hstmt); (5)
SQLNumResultCols(hstmt, &numCols) ; (6)
SQLBindCol(hstmt, 1, SQL_C_CHAR, b_titleid, 6, NULL); (7)
SQLBindCol(hstmt, 2, SQL_C_CHAR, b_title, 64, NULL);
clirc = SQLFetch(hstmt); (8)
printf("\n--ID--,----Title---- \n");
while(clirc != SQL_NO_DATA_FOUND)
{ printf("%6s,%64s\n", b_titleid, b_title);

clirc = SQLFetch(hstmt);
}
SQLFreeHandle(SQL_HANDLE_STMT, hstmt); (9)
/* ================ end of CLI program ================== */
EXEC SQL commit;
EXEC SQL connect reset; /* Disconnect */
Chapter 7. Application conversion 209

1. Allocating handles of CLI for environment and connection.

2. Connecting to server (database) with NULL value. After this statement,
CLI statements can use the connection which was established by the
embedded SQL’s CONNECT statement.

3. Preparing the SQL statement that calls the stored procedure ‘prc_titles’.
Binding the SQL statement to a database server.

4. Binding the ‘b_type’ variable for the parameter marker ‘?’ in the SQL
statement.

5. Executing the SQL statement.

6. Checking the number of columns in the result set.

7. Binding variables for the answer set.

8. Fetching each row of the answer set.

9. Deallocating statement handle.

7.9.7 SQL Communication Area (SQLCA)
Both Sybase and DB2 UDB have the SQL Communication Area (SQLCA)
structure to store the return code for each SQL statement. As shown in Table
29 and Table 30, the names and functionality are almost same, with some
differences in the parameter types and the usages. For example, sqlcode is an
integer type value in Sybase, while it is a short value in DB2 UDB. The field
sqlerrd[2] in Sybase shows the number of rows affected whereas DB2 does
not have this information in SQLCA. The sqlerrd[0] in DB2 UDB has the
return code from a called stored procedure.

Table 29. Fields of SQLCA structure in Sybase

Field Data type Descriptors

sqlcaid char ID number of SQLCA

sqlcabc integer Size of SQLCA in bytes

sqlcode integer SQL return code

sqlerrm.sqlerrml integer Length for SQLERRMC

sqlerrm.sqlerrmc char Error message tokens

sqlerrp char Diagnostic information

sqlerrd integer[6] Diagnostic information
[2] is the number of rows affected.

sqlwarn char Warning flags
210 DB2 UDB V7.1 Porting Guide

Table 30. Fields of SQLCA structure in DB2 UDB

7.9.8 SQL Descriptor Area (SQLDA)
Both Sybase and DB2 UDB have the SQL Descriptor Area (SQLDA) to store
the description of the variables used in a prepared dynamic SQL statement.

As shown in Table 31 and Table 32, the names of the structure members are
different between Sybase and DB2. The sqlvar[].field in DB2 UDB and the
sd_column[].sd_datafmt field in Sybase are used to get the data type of the
column.

Table 31. Fields of SQLDA structure in Sybase

Field Data type Descriptors

sqlcaid char ID number of SQLCA

sqlcabc integer Size of SQLCA in bytes

sqlcode short SQL return code

sqlerrml short Length for SQLERRMC

sqlerrmc char Error message tokens

sqlerrp char Diagnostic information

sqlerrd integer[6] Diagnostic information

sqlwarn char Warning flags

sqlstate char Sqlstate

Field Data type Description

sd_sqln short Size of the sd_column array

sd_sqld short The number of columns in the query
being described

sd_column[].sd_datafmt CS_DATAFMT Identifies the Client-Library structure
associated with column

sd_column[].sd-sqldata pointer Address of host variable

sd_column[].sd_sqlind short NULL indicator for column

sd_column[].sd_sqllen integer Actual size of the data pointed by
sd_sqldata

sd_column[].sd_sqlmore pointer Reserved by Sybase
Chapter 7. Application conversion 211

Table 32. Fields of SQLDA structure in DB2 UDB

7.10 Client-Library program conversion

Sybase Open Client product provides DB-Library and Client-Library, which
includes a set of functions or APIs callable from third generation programming
languages such as C. Using either DB-Library or Client-Library, you can write
client application programs which send queries to Sybase server and process
the results. Sybase encourages customers to use Client-Library rather than
DB-Library for new application development, because DB-Library is an older
interface. Client-Library was introduced with Sybase System 10.

DB2 UDB provides the environment to develop callable SQL applications
using the DB2 UDB Call Level Interface (CLI). This driver implements the
ODBC function set, with the exception of some extended functions
implemented by the Driver Manager. If you have client application programs
using DB-Library or Client-Library, you would convert them into DB2 CLI
applications.

Coding DB2 CLI applications involves writing C/C++ modules that contain CLI
functions. To complete the client application conversion successfully, you
need to be familiar with the purpose, syntax, arguments and usages of CLI
functions, as well as those of DB-Library or Client-Library functions.

In this section, we will be focusing on Client-Library, and examine
Client-Library and DB2 CLI application development using a simple example
which fetches rows from a table and display them.

Field Data type Descriptors

sqldaid char ID number of SQLDA

sqldabc integer Size of SQLDA in bytes

sqln short The number of sqlvar elements

sqld short The number of columns or host
variable

sqlvar[].sqltype short Data type of column

sqlvar[].sqllen short Data length of column

sqlvar[].sqldata pointer Pointer to variable data value

sqlvar[].sqlind pointer Pointer to Null indicator
212 DB2 UDB V7.1 Porting Guide

7.10.1 Initialization and termination
A Client-Library application and a DB2 CLI application can be broken down
into a set of tasks. The basic tasks are: Initialization, SQL statement
processing, and Termination.

7.10.1.1 Initialize environment for a Client-Library application
In a Client-Library application, the initialization tasks involves allocating and
initializing environment, and establishing a connection to the server.

As the first step, a programming context structure needs to be allocated. To
request a context structure, an application calls the cs_ctx_alloc function.

The next step is initializing Client-Library for the allocated programming
context. The application calls the ct_init function which sets up internal
control structures and defines the version of Client-Library.

Once the Client-Library has been initialized, you can establish a connection
to a server by the following steps:

• Allocate a connection structure

A connection structure should be allocated by the ct_con_alloc function.

• Set properties for the connection (such as user name and password) if
necessary

To set user name and password for the allocated connection structure, you
should execute the ct_con_props function with an action type of CS_SET, for
the CS_USERNAME property and the CS_PASSWORD property.

• Logs into a server

Execute the ct_connection function to establish a connection to a server.
The argument to this function includes the allocated connection structure
and the server name.

7.10.1.2 Terminate environment for a Client-Library application
The termination phase involves disconnecting your application from the
server and freeing allocated resources after the transaction processing has
completed. The ct_close function closes a connection. The corresponding
connection structure can then be freed using ct_con_drop function. Once all
the connection structures have been freed, the ct_exit function can be called
to free the resource allocated for the Client-Library. If there are open
connections, the ct_exit function will close and deallocate all the
connections. Finally the Client-Library application calls the cs_ctx_drop

function to deallocate the context structure which allocated at the beginning
of the program.
Chapter 7. Application conversion 213

Figure 42 shows the function call sequences for initialization and termination.

Figure 42. Client-Library initialization and termination

Here is a C code sample illustrating the initialization and termination phase:

int main() {
CS_CONTEXT *context;
CS_CONNECTION *connection;

/* allocate a context structure*/
cs_ctx_alloc(CS_VERSION100, &context);
/* initialize Client-Library */
ct_init(context, CS_VERSION100);
/* allocate a connection structure */
ct_con_alloc (context, &connection);
/* setting user name and password for opening the connection*/
ct_con_props (connection, CS_SET, CS_USERNAME,

“sa”,CS_NULLTERM, NULL);

Allocate Connection
ct_con_alloc ()

Close Connection
ct_close()

Processing
SQL

statements

Free Resources for Ct-Lib

ct_exit ()

Deallocate Context
cs_ctx_drop ()

Initialization

Termination

Free Connection Structure

ct_exit ()

Allocate Context
cs_ctx_alloc ()

Initialize Client-Library

ct_init ()

Set Properties
ct_con_props ()

Open Connection
ct_connect ()
214 DB2 UDB V7.1 Porting Guide

ct_con_props (connection, CS_SET, CS_PASSWORD,
“pswd”,CS_NULLTERM, NULL);

/* connect to the data source */
ct_connect (connection,”ununbium”,0);

/********* Start SQL statements processing ***********/
/* allocate command structure, execute statement, etc.*/
/********* End SQL statements Processing **************/

/* disconnect from server*/
ct_close (connection, CS_UNUSED);
/* free the connection structure */
ct_con_drop (connection);
/* free the resource for Client-Library*/
ct_exit(context, CS_UNUSED) ;
/* deallocate context */
cs_ctx_drop (context) ;

exit (0) ;
}

7.10.1.3 Initialize environment for a CLI application
Like Client-Library applications, a CLI application needs to perform an
initialization task first. As the first step for an application that uses DB2 CLI,
an application needs to allocate an environment handle. An environment
handle provides access to global information such as attributes and
connections.To allocate an environment handle, the SQLAllocHandle function
should be called with a handle type of SQL_HANDLE_ENV. DB2 UDB CLI allocates
the environment handle, and passes the value of the associated handle back.

The next step is allocating a connection handle. A connection handle refers to
a data object that contains information associated with a connection to a
particular data source. This includes connection attributes, general status
information, transaction status, and diagnostic information.To request a
connection handle, an application calls SQLAllocHandle with a handle type of
SQL_HANDLE_DBC. You may need to allocate several connections handles in your
application in order to connect to more than one database, or even to
establish multiple connections to the same database. That is, one connection
handle for each concurrent connection.

Once a connection handle has been allocated, you can attempt to establish a
connection to the data source using that connection handle. The function
SQLConnect is used to request a database connection. The arguments to this
function include the name of the target data source, and optionally a useID
and password.
Chapter 7. Application conversion 215

7.10.1.4 Terminate environment for a CLI application
The termination phase involves disconnecting your application from the
database(s) and freeing allocated resources after the transaction processing
has completed. The SQLDisconnect API closes a connection. The
corresponding connection handle can then be freed using SQLFreeHandle with
a handle type of SQL_HANDLE_DBC. Only once all the connections handles have
been freed, the SQLFreeHandle function can be called with a handle type of
SQL_HANDLE_ENV to successfully free the environment handle.

Figure 43 shows the function call sequences for initialization and termination.

Figure 43. CLI initialization and termination

Allocate Environment

SQLAllocHandle ()

Allocate Connection

SQLAllocHandle ()

Connect

SQLConnect ()

Disconnect

SQLDisconnect ()

Processing
SQL

statements

Free Connection

SQLFreeHandle ()

Free Environment

SQLFreeHandle ()

Initialization

Termination
216 DB2 UDB V7.1 Porting Guide

Here is a C code sample illustrating the initialization and termination phase:

int main() {
SQLHANDLE henv;
SQLHANDLE hdbc;

/* allocate an environment handle */
SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
/* allocate the connection handle */
SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
/* connect to the data source */
SQLConnect(hdbc, "pubs2", SQL_NTS, "userid", SQL_NTS,

"password", SQL_NTS);

/********* Start SQL statements processing ***********/
/* allocate statement handle, execute statement, etc.*/
/********* End SQL statements Processing **************/

/* disconnect from database */
SQLDisconnect(hdbc) ;
/* free the connection handle */
SQLFreeHandle(SQL_HANDLE_DBC, hdbc) ;
/* free environment handle */
SQLFreeHandle(SQL_HANDLE_ENV, henv) ;
return (SQL_SUCCESS) ;

}

7.10.2 Executing SQL statement
The main task of the application is accomplished during the SQL statement
processing phase. Once a connection has been established to a data source,
the application can submit SQL statements to the data source.

7.10.2.1 Execute SQL statements for a Client-Library application
SQL statements are passed to Client-Library to query and retrieve the data
using a four step process:

1. Allocating command structure(s)

2. Building and executing SQL statements

3. Processing results

4. Deallocating the command structure

Allocating command structure(s)
A Client-Library application allocates command structures before executing
SQL statements. A Client-Library application uses command structures to
Chapter 7. Application conversion 217

send SQL statements to a server and process the results. A command
structure can be allocated executing the ct_cmd_alloc function.

Building and executing SQL statements
Once a command structure has been allocated, SQL statement can be
specified and executed. An application uses the ct_command function with a
command type of SQL_LANG_CMD to build the SQL statement to be submitted.
This function associates a specified SQL statement with the allocated
command structure.

To submit the built SQL statement, the ct_send function is used.

Processing results
After the statement has been executed, an application calls the ct_result

function to deal with the result. Executing this function, you can get the type
of result data. Depending on the type of result data, you need to perform
different processing.

For example, if you execute a select statement, the ct_result function would
get a result type of CS_ROW_RESULT, which indicates that zero or more rows of a
result set has been returned. Then the number of columns in the result set
can be found using the ct_res_info function. Information about the columns in
the result set, like name, column type or length can be obtained using
ct_describe.

In order to receive the data into variables in the application, the application
executes the ct_bind function. This function binds the application variables to
columns in the result set.

The next step is to call the ct_fetch function to fetch the first or next row of the
result set. If any columns have been bound in the previous step, data is
received into the bound application variables.

Deallocating the command structure
The ct_cmd_drop function is used to end processing for that SQL statement.
This drops the command structure.
218 DB2 UDB V7.1 Porting Guide

Figure 44 shows the function sequences for SQL statement processing.

Figure 44. Select statement processing in a Client-Library application

Here is a C code sample illustrating the SQL processing phase:

int main() {
CS_CONTEXT *context; /* context structure */
CS_CONNECTION *connection; /* connection structure */
CS_COMMAND *cmd; /* command structure */

/* Data format structures for column descriptions: */
CS_DATAFMT columns [2];

CS_INT datalength[2];
CS_SMALLINT indicator[2];
CS_INT count;

Deallocate statement handle

ct_cmd_drop()

Allocate command structure

ct_cmd_alloc()

Buid statement
ct_command()

Set reult
ct_results()

Get column info
ct_describe()

Bind application variables to column

ct_bind()

Retrieve values for bound columns
ct_fetch()

Execute statement

ct_send()

Get column number
ct_res_info()
Chapter 7. Application conversion 219

CS_INT results_type;
CS_CHAR name[40];
CS_CHAR city[40];

/********************* Initialization *****************/
/* allocate contest, connection structure, connect to the server */
/***************** End of Initialization **************/

/********* Start SQL statement Processing ************/
/* allocate command structure */
ct_cmd_alloc(connection, &cmd);
/* build SQL statement */
ct_command(cmd, CS_LANG_CMD,

"select au_lname, city from pubs2..authors where state = 'CA'",
CS_NULLTERM, CS_UNUSED);

/* exeucte the statement */
ct_send(cmd);
/* set up the result data */
ct_results(cmd,&result_type);
/* bind the first (au_lname) column of result set */
columns[0].datatype = CS_CHAR_TYPE;
columns[0].format = CS_FMT_NULLTERM;
columns[0].maxlength = 40;
columns[0].count = 1;
columns[0].locale = NULL;
ct_bind(cmd, 1, &columns[0], name, &datalength[0],&indicator[0]);
/* bind the second (city) column of result set */
columns[1].datatype = CS_CHAR_TYPE;
columns[1].format = CS_FMT_NULLTERM;
columns[1].maxlength = 40;
columns[1].count = 1;
columns[1].locale = NULL;
ct_bind(cmd, 2, &columns[1], city, &datalength[1], &indicator[1]);
/* fetch and print each row */
while (ct_fetch(cmd, CS_UNUSED, CS_UNUSED, CS_UNUSED, &count)

== CS_SUCCEED)
printf("%s : %s \n", name, city);

/* deallocate the command structure */
ct_cmd_drop(cmd);
/********* End statement processing **************/

/******************** Termination *********************/
/* disconnect, free connection and context structure*/
/**/

exit (0);
}

220 DB2 UDB V7.1 Porting Guide

7.10.2.2 Execute SQL statements for a CLI application
SQL statements are passed to CLI to query and retrieve the data using a four
step process:

1. Allocating statement handle(s)

2. Preparing and executing SQL statements

3. Processing results

4. Freeing statement handle(s)

Allocating statement handle(s)
Statement handles need to be allocated before any SQL statements can be
executed. A statement handle refers to the data object that is used to track
the execution of a single SQL statement. This includes information such as
statement attributes, SQL statement text, cursor information, result values
and status information. The API SQLAllocHandle is called with a handle type of
SQL_HANDLE_STMT to allocate a statement handle.

Preparing and executing SQL statements
Once a statement handle has been allocated, SQL statements can be
specified and executed using one of two methods:

• Execute directly, which combines the prepare and execute steps into one.
You would use this method if the statement will be executed only once or if
the column information is not needed prior to statement execution. The
function SQLExecDirect is used for executing the statement directly.

• Prepare then execute, which splits the preparation of the statement from
the execution. This method is useful if the statement will be executed
repeatedly, usually with different parameter values. This avoids having to
prepare the same statement more than once. The subsequent executions
make use of the access plans already generated by the prepare. The
prepare followed by execute is accomplished by the function calls
SQLPrepare and SQLExecute.

Processing results
The next step after the statement has been executed depends on the type of
SQL statement. If the statement is a query, you usually need to perform the
following steps to retrieve each row of the result set:

The first step requires establishing or describing the structure of the result
set. The number of columns in the result set is found using SQLNumResultCols.
Information about the columns in the result set, like name, column type or
length is obtained using SQLDescribeCol or SQLColAttributes.
Chapter 7. Application conversion 221

In order to receive the data into the application, one option is to bind the
application variables to columns in the result set using SQLBindCol.

The third step is to call SQLFetch to fetch the first or next row of the result set.
If any columns have been bound in the second step, data is received into the
bound application variables.

If the application does not bind any columns in the second step, as in the
case when it needs to retrieve columns of long data in pieces, it can use
SQLGetData after the fetch.

Both the SQLBindCol and SQLGetData techniques can be combined if some
columns are bound and some are unbound.

Freeing statement handle(s)
The call SQLFreeHandle with a handle type of SQL_HANDLE_STMT is used to end
processing for that statement. This drops the statement handle, and releases
all associated resources. However it is not necessary to drop the statement
handle if the associated SQL statement needs to be executed again by the
application.
222 DB2 UDB V7.1 Porting Guide

Figure 45 shows the function sequences for SQL statement processing.

Figure 45. Select statement processing in a CLI application

Here is a C code sample illustrating the SQL processing phase:

int main() {
SQLHANDLE henv; /*environemnt handle */
SQLHANDLE hdbc; /* connection handle */
SQLHANDLE hstmt; /* statement handle */

SQLCHAR * stmt = (SQLCHAR *) "SELECT au_lname, city
FROM authors WHERE state = ‘CA’";

struct
{ SQLINTEGER ind ;

SQLCHAR val[41];
} au_lname; /* variable to be bound to the AU_LNAME column */

struct

Deallocate statement handle

SQLFreeHandle()

Allocate statement handle

SQLAllocHandle()

Prepare and execute statement

SQLPrepare() and SQLExecute()
or

SQLExecDirect()

Get number of columns

SQLNumResultCols()

Get column info

SQLDescribeCol() or
SQLColAttribute()

Bind application variables to column

SQLBindCol()

Retrieve values for bound columns

SQLFetch()
Chapter 7. Application conversion 223

{ SQLINTEGER ind ;
SQLCHAR val[21];

} city; /* variable to be bound to the CITY column */

/********************* Initialization *****************/
/* allocate henv, hdbc, connect to the database */
/***************** End of Initialization **************/

/********* Start SQL statement Processing ************/
/* set AUTOCOMMIT on */
SQLSetConnectAttr (hdbc, SQL_ATTR_AUTOCOMMIT,

(SQLPOINTER) SQL_AUTOCOMMIT_ON, SQL_NTS) ;
/* allocate statement handle */
SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
/* exeucte the statement */
SQLExecDirect(hstmt, stmt, SQL_NTS);
/* alternatively, we could have prepared and executed the statement*/
/* SQLPrepare (hstmt, stmt, SQL_NTS); */
/* SQLExecute (hstmt); */
/* for the sake of simplicity, we will leave out steps */
/* to find out the structure of result set */
/* bind the first (au_lname) column of result set */
SQLBindCol(hstmt, 1, SQL_C_CHAR, au_lname.val, 40, &au_lname.ind);
/* bind the second (city) column of result set */
SQLBindCol(hstmt, 2, SQL_C_CHAR, city.val, 20, &city.ind);

/* fetch and print each row */
while (SQLFetch(hstmt) == SQL_SUCCESS)

printf("%s : %s \n", au_lname.val, city.val);
/* if you do not use the auto-commit mode, the transaction should */
/* be committed explicitly as following: */
/* SQLEndTran (SQL_HANDLE_DBC,hdbc, SQL_COMMIT); */

/* free the statement handle */
SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
/********* End statement processing **************/

/******************** Termination *********************/
/* disconnect, free connection and environment handles*/
/**/

return(SQL_SUCCESS);
}

224 DB2 UDB V7.1 Porting Guide

7.10.3 Diagnostics and processing errors in CLI programs
In a CLI program, the error and warning handling should be done using
function return codes and detailed diagnostics. Every CLI function returns a
function return code. This provides basic diagnostic information to the
application. The application should examine the return code before
proceeding to the next function call. Table 33 lists possible CLI return codes.
Not all return codes are applicable to each CLI function. If the application
encounters an unexpected return code from a function call, typically anything
other than SQL_SUCCESS, it can call SQLGetDiagRec or SQLGetDiagField to retrieve
detailed diagnostic information. The details include SQLSTATE, the native
error or SQLCODE, and the message text.

Table 33. DB2 UDB CLI function return codes

Return Code Explanation

SQL_SUCCESS The function completed successfully, no additional
SQLSTATE information is available.

SQL_SUCCESS_WITH_INFO The function completed successfully, with a warning
or other information. Call SQLGetDiagRec to receive
the SQLSTATE and any other informational
messages or warnings.

SQL_STILL_EXECUTING The function is running asynchronously and has not
yet completed. The DB2 CLI driver has returned
control to the application after calling the function,
but the function has not yet finished executing.

SQL_NO_DATA_FOUND The function returned successfully, but no relevant
data was found. When this is returned after the
execution of an SQL statement, additional
information may be available and can be obtained
by calling SQLGetDiagRec.

SQL_NEED_DATA The application tried to execute an SQL statement
but DB2 CLI lacks parameter data that the
application had indicated would be passed at
execute time.

SQL_ERROR The function failed. Call SQLGetDiagRec to receive
the SQLSTATE and any other error information.

SQL_INVALID_HANDLE The function failed due to an invalid input handle
(environment, connection or statement handle).
This is a programming error. No further information
is available.
Chapter 7. Application conversion 225

Embedded SQL applications rely on the SQLCA for all diagnostic information.
CLI applications can retrieve much of the same information by using
SQLGetDiagRec hence it is not necessary to examine the SQLCA in most cases.
However if you need to examine the SQLCA from within a CLI application the
SQLGetSQLCA function can be used.

The following code illustrates error handling and retrieval of diagnostic
information by a CLI application:

/* call a CLI function, for example: */
rc = SQLConnect(hdbc, "pubs2", SQL_NTS,

"baduid", SQL_NTS,"badpwd", SQL_NTS);
/* if not success, call an error checking routine */
if (rc !=SQL_SUCCESS) errprint(SQL_HANDLE_DBC, hdbc, rc);
...
/* example of a simple error routine to print the error: */
SQLRETURN errprint(SQLSMALLINT htype, /* A handle type */

SQLHANDLE hndl, /* A handle */
SQLRETURN erc) /* Return code */

{
SQLCHAR buffer[SQL_MAX_MESSAGE_LENGTH + 1] ;
SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1] ;
SQLINTEGER sqlcode ;
SQLSMALLINT length, i=1 ;

printf(">--- ERROR -- RC = %d ------------\n", erc);
while (SQLGetDiagRec(htype,hndl,i,sqlstate,&sqlcode,

buffer,SQL_MAX_MESSAGE_LENGTH + 1,
&length) == SQL_SUCCESS) {

printf(" SQLSTATE: %s\n", sqlstate) ;
printf("Native Error Code: %ld\n", sqlcode) ;
printf("%s \n", buffer) ;
i++ ;

}

return(SQL_ERROR) ;
}

In this example, we check to see whether the CLI call to connect to the
database returned successfully. If the wrong userid/password is specified, an
error condition occurs, and the errprint function is called to print out the
diagnostic information.
226 DB2 UDB V7.1 Porting Guide

7.10.4 Setup of environment for CLI application programs
When you develop CLI application programs, make sure you have installed
the DB2 UDB Software Developer’s Kit and bound the CLI bind files to the
database. To bind the CLI bind files, perform the following command from the
command line after connecting to the database:

db2 bind @db2cli.lst messages db2cli.msg grant public

In this example, db2cli.lst is the list file containing the CLI bind files. You
can find the db2cli.lst file in the bnd directly under the product installed
directory (default is C:\Program Files\sqllib\bnd) in Windows or OS/2
environments. In UNIX environments, the file is in the $HOME/sqllib/bnd

directly where $HOME is the instance owner’s home directly.

To change the default CLI behavior or increase CLI application performance,
you may want to modify the DB2 CLI configuration file (db2cli.ini), in which
you can specify the CLI configuration keywords. The DB2 CLI configuration
file is located in the cfg directory under the product installed directory
(Windows or OS/2 environment), or in the $HOME/sqllib/cfg directory where
$HOME is the instance owner’s home directly (UNIX environment).

You can directly edit the configuration file to set the CLI configuration
keywords, or use the Client Configuration Assistant (CCA) on Windows or
OS/2 platforms.
Chapter 7. Application conversion 227

228 DB2 UDB V7.1 Porting Guide

Appendix A. Conversion tools

In this appendix we will cover some of the conversion tools available to aid
the conversion process. This is not intended to be a complete list, but covers
some of the major products available to ease the conversion effort.

A.1 SQL Conversion Workbench

SQL Conversion Workbench (SQL-CW) Version 3.0, which is also called the
Stored Procedure Conversion Tool (SProCT), is a Windows based conversion
tool from ManTech Systems Solutions Corporation. It facilitates the
conversion of various database and the associated applications to any
database in the DB2 UDB family on any supported platform. Sybase Adaptive
Server Version 12.0 is one of the database management systems supported.
SProCT can be downloaded from the following Web site:

http://www-4.ibm.com/software/data/db2/migration

SProCT does the following:

• Unloads the metadata from the source database

• Loads the metadata into the repository database

• Edits the metadata

• Generates unload scripts for the source database

• Generates DDLs and load scripts for the target database

• Does data migration

• Does stored procedure conversion

• Provides metrics for the source database in order to estimate cost and
effort

• Allows modifications to the design and data definition of the target
database

• Allows code re-engineering

• Generates procedural code for stored procedures

See SQL Conversion Workbench User Guide, Document Number:
033100SProCT30, for more information on how to use SProCT. Once you
have installed SProCT, you can find the PDF file of this manual in the
following directory on your workstation:

C:\Program Files\mssc\scw\version3.pdf
© Copyright IBM Corp. 2000 229

This appendix will not cover all options and functionality of the tool, but will
present a high level view of the process we followed for our conversion.

A.1.1 Installation overview

The installation of the SQL-CW product is well documented so we will not
cover this in detail. It is either loaded from CD or from the file downloaded
from the Web site mentioned previously. From the Windows start menu,
select RUN, then the location of the file or CD and execute \SETUP, for
example F:\SETUP and the installation screen will appear. Simply follow the
instructions to complete the installation.

Note that a prerequisite to installation is that DB2 UDB Personal Edition,
Workgroup Edition or Enterprise Edition be installed since SQL-CW uses
DB2 for the repository database.

When you select Start > Programs >SQL Conversion Workbench from your
Windows start menu, you will see six options:

• First Steps

• Meta Load

• Oracle Unload

• Repository Edit

• SQL Server Unload

• Workbench

To get started, select First Steps and you will a the screen as shown in
Figure 46.
230 DB2 UDB V7.1 Porting Guide

Figure 46. SQL-CW First Steps menu

If you have not already done so during the installation process, here you can
specify the path for your repository database, create a repository database,
or delete a DB2 database created previously.

If you have not already done these steps, they need to be done now.

When the repository database is completed, you can unload your metadata
using either the SQL Server Unload option from the menu, or you can select
the SQL Conversion Workbench from the main screen tool-bar.

A.1.2 Unloading metadata

The next major will be to unload the metadata. The source database must be
registered as an ODBC data source before you can unload the metadata. To
unload the metadata select START > Programs > SQL Conversion
Workbench > SQL Server Unload, or click the SQL Server Metadata
Unload icon on the main Window. This will bring up a window for you to login
to your source database (Figure 47).
Appendix A. Conversion tools 231

Figure 47. Login window for SQL Server unload

Change any incorrect information and click OK. You will next see a window of
objects to select for the unload. You will be asked to specify output file names
also (Figure 48).

Figure 48. SQL Server unload window

When you have made your selection(s), click the Unload button and the data
will be unloaded. This may take a few minutes if you have large databases.

When the unload process is completed, you will see a couple of windows, one
with any errors listed, and a second with the metrics for the metadata
unloaded. The paths for these files are listed at the top of the windows if you
232 DB2 UDB V7.1 Porting Guide

would like to look at the files later. Figure 49 shows the metrics for the
metadata unloaded.

Figure 49. Unloaded metadata

A.1.3 Loading metadata

When your metadata is unloaded with no errors, the next step will be to load
the metadata to the repository database. To load the metadata, select START
> Programs > SQL Conversion Workbench > Meta load, or click the
Repository Load icon on the main Window. This will bring up a window as
shown in Figure 50.
Appendix A. Conversion tools 233

Figure 50. Load metadata to repository

The first thing you will see when you click the Load button is a window for
login to your repository database (Figure 51):

Figure 51. Login to repository database

When the process completes, you will see a list of errors or warnings. Figure
52 is a sample of our error window.
234 DB2 UDB V7.1 Porting Guide

Figure 52. Load repository errors

Note that some of the mapped index name are altered because an index
name must be unique within a DB2 database.

An IMAGE or TEXT data column is mapped to a column with the data type
BLOB(2G) or CLOB(2G) by default. You need to adjust the size based on the
required size for these columns.

Now that we have completed loading the table metadata to the repository, our
next step will be to edit the data. The first thing we did was to go over the
complete list of errors and warnings and correct those.

A.1.4 Editing metadata

The repository editor allows you to perform a number of tasks to prepare your
metadata for the new DB2 platform as well as some DB2 administrative tasks.
To name a few, you can:

• Customize your target database

• Rename your target database

• Set up and modify table spaces

• Create and modify buffer pools

• Modify tables and columns

• Create, modify or delete foreign keys

• View privileges if you selected the Extract Grants option before doing the
unload
Appendix A. Conversion tools 235

To edit the metadata you will need to click the Repository Edit icon on the
main window, or you can select TOOLS>> Repository Edit to bring up the
edit window.

You will be required to select database from and to, file names to edit as seen
Figure 53.

Figure 53. Repository edit window

There are a number of reports that can be obtained regarding errors, list
constraints, views, triggers and other types of objects.

When you have completed the editing and are satisfied with the results, you
can generate DDL for your target DB2 UDB database.

To generate the DDL you will need to click File > Generate DDL and a
window as shown in Figure 54 will appear.
236 DB2 UDB V7.1 Porting Guide

Figure 54. Generate DDL

Here you will need to select your files, server and database that you want to
generate DDL for your new DB2 UDB database. Press Build DDL and the
process will begin.

There is a button to select your delimiting character for the columns output.
The default is the tilde (~), so be sure this character does not exist in your
data or select another delimiting character.

When the process completes you will see a small window with the list of files
created as shown in Figure 55, the type of files and the path they were written
in. You will need to review these files and make any corrections necessary.

Figure 55. DDL file and scripts created
Appendix A. Conversion tools 237

You will want to look at these files and make corrections if necessary. The
files created will allow you to create database, table spaces, tables and other
database objects as well as provide both select statements and BCP
commands to unload your data. There is also a file containing the necessary
commands to load the data to your DB2 UDB database.

You are now ready to build your target database. This can be accomplished
by using the DDL file created in the previous step.

Open a DB2 command window and execute the DDL as the following
example:

db2 -f pubs2.ddl -t -r output.txt -s -l errorlog.txt

Check this step for errors and you will be ready to begin the data migration
process.

A.1.5 Data migration

Data migration statements were created in the previous step. These may
require modification. Pay special attention to the Sybase datetime data type
and make sure it is in the correct format for the DB2 timestamp data type.

A.1.6 Stored procedure conversion

Stored procedure conversion can be accomplished with SQL-CW product in
either batch mode or in interactive mode.

A.1.6.1 Batch code conversion
For batch mode, you will select File > DBMS Procedures. You will then see a
window as shown in Figure 56:

Figure 56. Procedure batch conversion selection window
238 DB2 UDB V7.1 Porting Guide

You then click Procedures and click OK and the procedure conversion
begins. A small window as shown in Figure 57 will appear asking if you want
to continue.

Figure 57. Stored procedure conversion

Click OK to begin the conversion process.

There will be a progress bar to indicate status. This may take a few minutes if
you have many stored procedures.

This conversion process will create three types of files,

• *.sta files contain assessment metrics

• *.err files contain errors and warnings

• *.sqp files contain the converted stored procedure

Figure 58 is a sample of an error (.err) file:

Figure 58. *.err file sample

Once the procedures are converted you will need to carefully go through all
*.err files to check for errors and warnings and make all necessary
corrections.

A.1.6.2 Interactive conversion
The interactive conversion mode allows you to convert individual stored
procedures one at a time.
Appendix A. Conversion tools 239

To begin interactive conversion, from the main screen menu bar, select File >
DBMS Procedures and expand the Procedures folder.

Select the procedure you want to convert and click OK and the source stored
procedure text will appear as shown in Figure 59:

Figure 59. Interactive convert screen

The Convert button is activated on the main screen, and when you click it,
the stored procedure is converted and the output is displayed as Figure 60.
240 DB2 UDB V7.1 Porting Guide

Figure 60. Interactive stored procedure output

When a stored procedure is converted, an error file (.err) is also generated.
Go though all the errors and warning and make all necessary corrections.

After you have checked and cleaned up all errors, you can execute the CREATE

PROCEDURE statement using DB2 Stored Procedure Builder (SPB) or from the
DB2 Command Line Processor (CLP).

A.2 Other tools

There are many tools you may utilize for your conversion project. Here we will
introduce two of these tools: Data Junction and Platinum ERwin.

A.2.1 Data Junction

Data Junction offers a transformation tool for DB2 UDB data migration and
application integration. It is a visual design tool for building and testing data
transformations that work between DB2 and other data formats such as
Appendix A. Conversion tools 241

Sybase Adaptive Server. Sybase SQL Server is supported via a native API, a
Massive Insert API, and the bcp command.

Projects and transformations designed with Data Junction can be executed by
the DJEngine. This tool is an engine that executes data transformations on
demand or as scheduled.

The graphic interface allows the definition of source-to-target mapping and
transformation rules. It accounts for data type differences, and can set
various filters to dynamically modify target columns during the conversion
process.

For more information, see the Data Junction Technical Overview published at
the following Web site:

http://www.datajunction.com/products/dj_technical.html
http://www.datajunction.com/products/matrix_formats_1.html

Or visit the Data Junction Corporation Web site at the following URL:

http://www.datajunction.com

A.2.2 PLATINUM ERwin

ERwin is a database design tool that aids in designing and maintaining
database applications. A logical model, along with business rules, defines the
database, and a physical model represents the target database. ERwin
allows visualization of the structure, key elements, and design of a database.
It automatically generates tables, stored procedures, and trigger code for
leading databases such as DB2 UDB and Sybase SQL Server.

ERwin can also be used to reverse-engineer database objects using a DDL
script or existing database. The physical model allows users to select
different target databases and generate DDL script for every target. Using this
feature, DDL scripts for different databases and versions can be easily
supported.

For more information, see the PLATINUM ERwin Fact Sheet published at the
following Web site:

http://www.platinum.com/products/factsht/erwin_fs.htm

Or visit the PLATINUM Technologies Web site at the following URL:

http://www.platinum.com/products/ap_dev.htm
242 DB2 UDB V7.1 Porting Guide

Appendix B. Sybase and DB2 UDB terms

This appendix attempts to relate some common tasks and terms. The Sybase
task is listed, along with the equivalent DB2 UDB steps to accomplish the
same task or similar task.

B.1 Sybase versus DB2 UDB terminology

The first thing is to look at some comparisons of terms relating to
administrative tasks. Although they will not relate exactly, they will be close
(see Table 34).

Table 34. Sybase versus DB2 UDB terminology

B.2 Sybase versus DB2 task comparison

In Table 35, there are some administrative tasks a DBA would normally
preform, along with the Sybase and DB2 UDB solutions. Sybase Central has
functionality to perform most of these tasks and the DB2 UDB provides most

SYBASE DB2 UDB

Sybase server DB2 UDB Instance

database database

device table space and containers

segment

login to server attach to instancea

a. You can execute the ATTACH command to attach to the DB2 instance on the
same workstation or remote workstation. To perform instance administrative tasks
like creating a database, updating the database manager, and killing connected
database user, you have to attach to the DB2 instance. If you have not executed
the ATTACH command, all the instance level commands are executed against the
current instance, specified by the DB2INSTANCE environment variable.

use database connect to database

master database system catalogs

tempdb temporary table spaces
© Copyright IBM Corp. 2000 243

of this functionality through the Control Center, the Command Center or the
Stored Procedure Builder (SPB).

Table 35. Sybase versus DB2 UDB comparable tasks

Task Sybase DB2 UDB

View the server
options

sp_configure GET DBM CFG

View the
database
options

GET DB CFG FOR dbname

Update server
options

sp_configure
‘option_name’, new_value

UPDATE DBM CFG USING
‘config_parameter’,
new_value

Update
database
options

UPDATE DB CFG FOR dbname
USING ‘config_parameter’,
new_value

Display active
servers or
instances

showserver (executed from
UNIX shell)

db2ilist
(executed from UNIX shell)

Access server or
instance

isql -Uuser -Ppswd
-Sserver

ATTACH TO instance_name
user user_name using pswd

Access
database

use dbname CONNECT TO dbname user
user_name using pswd

List databases in
server or
instance

sp_helpdb LIST DB DIRECTORY

List devices or
files used by the
databases

sp_helpdevice LIST TABLESPACES or
LIST TABLESPACE CONTAINERS

Find space used
or available
space

sp_helpdb dbname
or
sp_helpsegment segname
or
sp_spaceused

LIST TABLESPACE CONTAINERS
FOR (tsid) SHOW DETAIL
or
LIST TABLESPACES SHOW DETAIL

List database
tables

sp_help LIST TABLES

List table
characteristics

sp_help tablename DESCRIBE TABLE tablename
244 DB2 UDB V7.1 Porting Guide

List source for
stored
procedures

sp_helptext procname Use ‘Get Source’ function of the
DB2 Stored Procedure Builder

Administer
security

grant
revoke
sp_helpuser
sp_addlogin
sp_adduser
sp_addalias
sp_dropalias
sp_dropuser
sp_droplogin
sp_addgroup
sp_helpgroup
sp_changegroup
sp_password

GRANT
REVOKE
UPDATE DBM CFG USING
SYSADM_GROUP group_name

UPDATE DBM CFG USING
SYSCTRL_GROUP group_name

UPDATE DBM CFG USING
SYSMAINT_GROUP group_name

All the authentication set up is
done by an external security
mechanism such as Operating
System (mkuser, chuser,
mkgroup, chgroup, passwd)

Start a server or
instance

startserver -fsrvr_name
(from UNIX shell)

db2start
(from UNIX shell)

Backup
database

dump database db_name to
‘/path/file’

BACKUP DATABASE db_name
TO /path/file

Restore
database

load database db_name
from ‘/path/file’

RESTORE DATABASE db_name
FROM /path/file

Export a text file
from a table

bcp table_name out
filename ...

EXPORT TO filename OF type
SELECT ...

Load a text file
into a table

bcp table_name in filename
...

LOAD FROM filename OF type
INSERT INTO tablename

or
IMPORT FROM filename OF type
INSERT INTO tablename

List connected
users

sp_who LIST APPLICATIONS

Kill connected
users

kill spid_number FORCE APPLICATION

Generate DDLs defncopy db2look -e

Task Sybase DB2 UDB
Appendix B. Sybase and DB2 UDB terms 245

B.3 Sybase logging versus DB2 UDB logging

Transaction logging is a different concept in Sybase and DB2 UDB. As you
know with Sybase, each database has a table syslogs, which is used during
database recovery. It is up to the Database administrator to control these
logs, both by setting options for the syslogs table and schedules for dumping
the logs. The dump transaction command has options to:

dump transaction database_name to ‘/path/file’
dump transaction database_name with no_log
dump transaction database_name with truncate_only

Recovery is accomplished by using the syslogs online to the database and if
that fails, then you can recover by loading a database and the load
transaction as;

load database database_name from ‘/path/file’
load transaction database_name from ‘/path/file’

DB2 UDB has a separate logging strategy and different recovery
methodology. Logging is accomplished in circular or archival method.

When using circular logging, the log files are based on the size specified in
the LOGFILESIZ and the number of files specified in the LOGPRIMARY and
LOGSECONDARY database configuration parameters. Based on these values, DB2
UDB fills a file, then goes to the next until the maximum values of files and
size are consumed. When a log file has had all of it’s transactions committed,
it can be reused. Crash recovery and version recovery are possible using
circular logging, but not roll-forward recovery.

When archival logging is used, when all transactions in the log have been
committed, it is closed and the next file used. The closed file is now online
archived. Based on the values of the LOGRETAIN database configuration
parameter, such files will remain online archived and a user exit routine can
move them to offline archiving, meaning not in the active log file directory.
Recovery, including roll-forward recovery can be done with archival logging.
246 DB2 UDB V7.1 Porting Guide

Appendix C. Special notices

This publication is intended to help database administrator and system
designers to understand and evaluate the activities involved in performing a
database and application conversion from Sybase Adaptive Server for AIX
Version 12 to DB2 UDB for AIX Version 7.1. The information in this publication
is not intended as the specification of any programming interfaces that are
provided by DB2 UDB for AIX Version 7.1. See the PUBLICATIONS section of
the IBM Programming Announcement for DB2 UDB for AIX Version 7.1 for
more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
© Copyright IBM Corp. 2000 247

reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

e (logo)®
IBM �

AIX
AS/400
CT
DataJoiner
DB2 Connect
DRDA
OS/2
RS/6000
VisualAge
XT

Redbooks
Redbooks Logo
AT
DATABASE 2
DB2
DB2 Universal Database
Netfinity
OS/390
RETAIN
S/390
System/390
248 DB2 UDB V7.1 Porting Guide

Sybase, Adaptive Server, Adaptive Server Enterprise, Client-Library,
DB-Libaray, Open Client are trademarks of Sybase,Inc. in the United States
and/or other countries.

The SQL Conversion Workbench is a trademark of ManTech Systems
Solutions Corporation in the United States and/or other countries.

Data Junction is a trademark of Data Junction Corporation in the United
States and/or other countries.

Erwin is a trademark of Computer Associates International, Inc. in the United
States and/or other countries.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix C. Special notices 249

250 DB2 UDB V7.1 Porting Guide

Appendix D. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 255.

• Converting from Oracle AIX to DB2 for OS/390, SG24-5478

• DATABASE 2 for AIX Conversion Guide Oracle 7.1 to DB2 Version 2,
SG24-2567

• DataJoiner Implementation and Usage Guide, SG24-2566

• Planning for Conversion to the DB2 Family: Methodology and Practice,
GG24-4445

D.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

CD-ROM Title Collection Kit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 251

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

D.3 Other resources

These publications are also relevant as further information sources:

• DB2 UDB for UNIX, Quick Beginnings, GC09-2970

• DB2 UDB Installation and Configuration Supplement, GC09-2957

• DB2 UDB SQL Reference, Volume 1, SC09-2974

• DB2 UDB SQL Reference, Volume 2, SC09-2975

• DB2 UDB Command Reference, SC09-2951

• DB2 UDB Data Movement Utilities Guide, SC09-2955

• DB2 UDB Application Building Guide, SC09-2948

• DB2 UDB Application Development Guide, SC09-2949

• DB2 UDB Call Level Interface Guide and Reference, SC09-2950

• DB2 UDB Administration Guide: Planning, SC09-2946

• DB2 UDB Administration Guide: Implementation, SC09-2944

• DB2 UDB Administration Guide: Performance, SC09-2945

• DB2 Universal Database V6.1 for UNIX, Windows, and OS/2 Certification
Guide, ISBN:0-13-086755-1

• Installation Guide Sybase Adaptive Server Enterprise for IBM RISC
System/6000 AIX, 35892-01-1200-01

• Configuring Adaptive Server for UNIX Platforms, 35823-01-1200-01

• Sybase Adaptive Server Enterprise Reference Manual, 36271-01-1200

• Sybase Adaptive Server Enterprise Utility Programs for UNIX platforms,
36124-01-1200-01

• Sybase Adaptive Server Enterprise Transact-SQL User’s Guide,
32300-01-1200

• Sybase Adaptive Server Enterprise System Administration Guide,
32500-01-1200
252 DB2 UDB V7.1 Porting Guide

D.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• http://www.ibm.com/

IBM Home Page

• http://www.redbooks.ibm.com/

ITSO Home Page

• http://www-4.ibm.com/software/data/db2/udb/

DB2 UDB Home Page

• http://www-4.ibm.com/software/data/db2/migration/

DB2 Migration Home Page

• http://www-4.ibm.com/software/data/db2/library/

DB2 Product and Service Technical Library

• http://www-4.ibm.com/software/data/db2/udb/winos2unix/support/

DB2 Universal Database and DB2 Connect Online Support

• http://www.sybase.com/

Sybase Home page

• http://sybooks.sybase.com/

Sybase Product Manuals

• http://www.mantech.com/

ManTech Systems Solutions Corporation Home Page
Appendix D. Related publications 253

254 DB2 UDB V7.1 Porting Guide

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 255

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
256 DB2 UDB V7.1 Porting Guide

Index

Symbols
@@error 151, 171
@@identity 151
@@parallel_degree 153
@@rowcount 154, 155
@@sqlstatus 151
@@SYB_IDENTITY 49

A
Add constraints 78
Additional DB2 UDB Version 7.1 functions 139
ALTER DATABASE 28, 29, 39
Archival logging 37
ATTACH 244

B
BACKUP DATABASE 245
Backup server 31
bcp command 245
BCP utility 91

using format file 93
BEGIN TRAN statement 182
binary data type 48
BIND 126
Bind Option 169

C
chained mode 124, 203
CHANGE ISOLATION command 126
Character data type 42
character delimiter 101
CHARINDEX function 191, 193
Circular logging 37
CLI configuration file 227
CLI return codes 225
Client-Library 212, 213, 215, 217
COL_LENGTH function 136
column delimiter 100
Command

ATTACH 244
CONNECT 244
CREATE DATABASE 66
DESCRIBE TABLE 244
GET DB CFG 244
© Copyright IBM Corp. 2000
GET DBM CFG 244
LIST DB DIRECTORY 244
LIST TABLES 244
LIST TABLESPACE CONTAINERS 244
LIST TABLESPACES 244
UPDATE DB CFG 244
UPDATE DBM CFG 244

commit 125
compatible functions 127
Compiler Options 169
compute 121
configuration 7
CONNECT 244
CONNECT statement 204
connect statement 202
Constraint

add 78
container 32, 39, 40
CONTINUE handler 171
Conversion

considerations 21
Data 91
database 53
Manual conversion 59
Planning 15

Conversion Method 53
conversion process 9
Conversion strategy

Conversion methodology 9
Conversion Tools 229
CONVERT 3, 46, 186
convert clause and casting 122
convert function 98
CREATE DATABASE 25, 27, 33, 39
CREATE DATABASE command 66
Create DB2 database 65
Create DB2 instance 64
CREATE DISTINCT TYPE statement 73
CREATE INDEX 29
CREATE INDEX statement 81
Create Indexes 81
CREATE PROCEDURE 174
CREATE TABLE 30, 36, 40, 49, 50
Create table spaces 67
Create table statement 75
Create Tables 74
CREATE TABLESPACE 32
257

CREATE TABLESPACE statement 70
CREATE TYPE 51
Create user defined data types 72
Create view statement 80
Create Views 79
ct_cmd_drop 218
ct_connection 213
ct_fetch 218
ct_result 218
CURRENT DEGREE special register 154
cursor 146, 148, 177, 179, 180, 186, 188, 190,
193, 209
cursor processing in Sybase trigger 160
Cursor Stability 126
customer application 5

D
Data conversion 91
Data Junction 241
database 65
database conversion 53
Database files 38
Database managed space 34
Database Managed Space (DMS) 32
Database structure and data types 23
Database structure comparisons 23
DataJoiner 3, 6, 104

create nickname 110
data export 111
install 105

DataJoiner server mapping 109
DATE 46
DATEADD function 135
DATEDIFF 132
DATETIME 3, 185
Datetime data type 45
DB2 container 32
DB2 data files 34
DB2 database directories 37
DB2 identity columns 49
DB2 IMPORT utility 99

file type modifier 100, 101, 102, 103
DB2 LOAD utility 99

file type modifier 100, 101, 102, 103
DB2 logging 36
DB2 Logical storage 39
DB2 Registry Variable

DB2_SQLROUTINE_COMPILE_COMMAND

169
DB2_SQLROUTINE_COMPILER_PATH 169
DB2_SQLROUTINE_PREPOPTS 169, 170

DB2 table space 32
DB2 tables 36
DB2HIST.ASC 38
DB2HIST.BAK 38
db2ilist 244
DB2INSTANCE 37
db2look 245
db2start 245
dbccdb database 25
DB-Library 212
decision to convert 1
Decision to port databases and applications 1
DECLARE 144
DECLARE CURSOR 193
DECLARE CURSOR statement 176
declared global temporary table 193
declared temporary table 145, 190
default segment 27
DEFINITION ONLY option 120
defncopy 245
DEFNCOPY utility 59, 60
delete statement 118
delete trigger, conversion 162
deleted table 159
DESCRIBE TABLE 244
device 28, 39
disk init 25, 28, 29, 39
DMS table space 33, 35, 36
dump database 245
dump transaction 31

E
embedded SQL 199
Environment Variables for compilers 169
error handling, in stored procedures 170
EXPORT 245
Export tables using DataJoiner 111
external functions 139

F
FETCH statement 154
file type modifier CHARDEL 101
file type modifier COLDEL 100
file type modifier DELPRIORITYCHAR 102
file type modifier IDENTITYIGNORE 103
258 DB2 UDB V7.1 Porting Guide

file type modifier IDENTITYOVERRIDE 103
FORCE APPLICATION 245
Function comparison 127
functions not in DB2 UDB 135

G
GENERATED ALWAYS 50
GET DB CFG 244
GET DBM CFG 244
GET DIAGNOSTICS 154, 189
GETDATE 46, 138
GETDATE special register 137
global variable 150, 151
group by, in select statement 121

H
having, in select statement 121
holdlock 120
Host Variable Declarations 52

I
IDENTITY 49
identity column 117, 152
identity columns 102
IDENTITY_VAL_LOCAL 50, 151, 153
IDENTITYOVERRIDE 50
IMPORT 3
Import tables from IXF files 112
INCREMENT BY, for IDENTITY Column 50
index 39
indexes 81
inner join 123
INSERT function 193
INSERT INTO 152
insert statement 116
inserted table 159
installing DataJoiner 105
instance 64, 116
integrated exchange format (IXF) files 104
interfaces file 23, 24
ISNULL function 95
isql 244
IXF files 3

J
join 117, 118, 123

K
kill 245

L
LIST APPLICATIONS 245
LIST DB DIRECTORY 244
LIST TABLES 244
LIST TABLESPACE CONTAINERS 244
LIST TABLESPACES 244
LOAD 3, 245
load database 245
Load into identity columns 102
local variables 121
LOCATE function 193
log files 36
LOGFILSIZ 37
logging 36
logging comparison 246
LOGPRIMARY 37
LOGSECOND 37
logsegment 27, 30, 31
LONG data column 35
Long table space 33

M
ManTech SQL Conversion Workbench 1, 4
ManTech SQL Conversion Workbench (SQL-CW)
6, 62, 229
master

29
master database 24, 25, 26
model database 24, 25, 26, 29
money 49

N
nested stored procedure 179
nickname 110
NODE 37
noholdlock 120
Numeric data type 44

O
ON ROLLBACK 148
order by, in select statement 121
Other data types 48
outer joins 123
259

P
PI function 137
Planning conversion 15
PLATINUM Erwin 242
Precompile Option 169
PREP 126
Primary log file 37
Project overview 2
project scenario 5
Project scope 6

R
RAISERROR command 173
raw device 35
Read Stability 126
Repeatable Read 126
RESIGNAL 174
RESTORE DATABASE 245
retain identity values 103
rollback 125
ROLLBACK TO SAVEPOINT statement 185
ROLLUP 121
rules 73

S
save point 125, 147, 148, 149, 181, 183
schema 115
Secondary log file 37
Security 84
segment 27, 28, 30, 39
select from 117
select into 120
select statement 119, 204
SET CONNECTION 203
SET ROWCOUNT 186
set transaction isolation level 126
showserver 244
SIGNAL 174
SIGNAL statement 173
SMALLDATETIME 3
smalldatetime 46
smallmoney 49
SMS table space 33, 34
SMS table space directory 35
sp_addalias 245
sp_addgroup 245
sp_addlogin 245
sp_addsegment 28, 29

sp_addtype 50
sp_adduser 245
sp_bindefault 73
sp_bindrule 73
sp_changegroup 245
sp_configure 23, 58, 244
sp_dropalias 245
sp_droplogin 245
sp_dropsegment 29
sp_dropuser 245
sp_extendsegment 28, 39
sp_help 60, 244
sp_helpcache 58
sp_helpconstraint 58
sp_helpdb 53, 58, 67, 244
sp_helpdevice 58, 244
sp_helpgroup 58, 245
sp_helpindex 58, 81
sp_helpkey 58
sp_helplanguage 58
sp_helplog 58
sp_helpobjectdef 58
sp_helprotect 58
sp_helpsegment 56, 58, 67, 244
sp_helpsort 58
sp_helptext 58, 245
sp_helpuser 58, 245
sp_password 245
sp_placeobject 28
sp_spaceused 68, 244
sp_who 245
SPB 194, 199
special registers 137
SProCT 1
spt_committab 24
SQL_HANDLE_DBC 216
SQL_HANDLE_ENV 215
SQL_LANG_CMD 218
SQLAllocHandle 221
SQLBP.1 38
SQLCA 208, 210
sqlca structure 204
SQLCODE 172
sqlcode 207
SQLColAttributes 221
SQL-CW 1
SQLDA 211
SQLDBCON 38
SQLDescribeCol 221
260 DB2 UDB V7.1 Porting Guide

sqlerrmc 207
SQLExecute 221
SQLFreeHandle 222
SQLINSLK 38
SQLNumResultCols 221
SQLOGCTL.LFH 38
SQLPrepare 221
SQLSCODE 171
SQLSPCS.1 38
SQLSTATE 151, 171
SQLTMPLK 38
START WITH 50
startserver 245
Statement

CREATE DISTINCT TYPE 73
CREATE INDEX 81
CREATE TABLE 75
CREATE TABLESPACE 70
CREATE VIEW 80

statement comparison, embedded SQL 200
stored procedure 170, 180, 182, 183, 189, 197,
208, 209
Stored Procedure Builder (SPB) 194
Stored Procedure Conversion Tool (SProCT) 229
stored procedure, conversion 168, 175, 176
STUFF and INSERT 134
STUFF function 190, 191, 193
subquery 118
SUBSTRING function 190
substring function 98
Supported Compiler 168
Sybase Central 59, 61
Sybase database structure 23
Sybase devices 25
Sybase segments 27
Sybase tables 30
sybinit 23
sybsystemdb database 24
sybsystemprocs 25
sybsystemprocs database 24, 26, 29
SYSCATSPACE 32
syslogs 30
System managed space 34
System Managed Space (SMS) 32
System temporary table space 33
Syyyyyy.LOG 38

T
table space 32, 33, 39, 40
table spaces 67
Tables 40
tables 74
task comparison 243
temdb database 143
tempdb

24, 29
tempdb database 24, 25, 26, 29, 145, 146
temporary table 142, 143, 144, 145, 146
TEMPSPACE1 32
termination phase 216
terms comparison 243
TIME 46
TIMESTAMP 46, 185
TIMESTAMPDIFF 132, 133
Transaction comparison 124
transaction isolation level 126
transaction log path 67
Transaction logs 30
transaction model 124
trigger 164, 165, 166
trigger conversion 155
triggering event 157
triggers 4

U
unchained mode 124, 203
Uncommitted Read 126
UNION 124
unload data using bcp utility 92
unloading data 91
unloading data with a Select statement 94
unloading datetime data type 96
unloading text data 96
UPDATE DB CFG 244
UPDATE DBM CFG 244
UPDATE statement 155
update statement 119
update trigger conversion 162
use command 244
user defined data types 50, 72
USER special register 137
User temporary table spaces 34
user-defined SQL functions 135
USERSPACE1 32, 33, 36
261

V
VALUES(CURRENT TIMESTAMP) 138
Views 79

W
Wild Card Characters 122
262 DB2 UDB V7.1 Porting Guide

© Copyright IBM Corp. 2000 263

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-6128-00
DB2 UDB V7.1 Porting Guide

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

(0.5” spine)
0.475”<->0.875”

250 <-> 459 pages

DB2 UDB V7.1 Porting Guide

®

SG24-6128-00 ISBN 0738419400

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

DB2 UDB V7.1
Porting Guide

A practical guide to
porting Sybase
Adaptive Server to
DB2 UDB

Techniques and
considerations for
migration projects

Databases,
applications, and
data conversion

This IBM Redbook is intended to help database administrators
and system designers perform database and application
conversion from Sybase to DB2 Universal Database (DB2
UDB) Version 7.1. It contains a description of the conversion
process and suggestions on how the mapping of database
features may be accomplished.

The target audience of this redbook is database
administrators and system designers with background in
Sybase and/or DB2 UDB for AIX.

This book was written from the AIX operating system
perspective, and some commands shown in this book may
not be available on other operating systems. However, all
sections in this book except some operating system specific
commands and operations should be applicable for database
systems on non-AIX operating systems such as Solaris and
Windows NT.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction
	1.1 Decision to port databases and applications
	1.2 Project overview
	1.3 Summary of considerations

	Chapter 2. Project scenario
	2.1 Source database system
	2.2 Project scope
	2.3 Hardware and software configuration

	Chapter 3. Conversion process
	3.1 Strategy and conversion methodologies
	3.1.1 Strategy definition
	3.1.2 Conversion methodologies

	3.2 Planning the conversion
	3.2.1 Stage one: defining the strategy
	3.2.2 Stage two: testing the concept
	3.2.3 Stage three: implementation and cut-over

	3.3 Conversion considerations

	Chapter 4. Database structure and data types
	4.1 Database structure comparisons
	4.1.1 Sybase database structure
	4.1.2 DB2 database structure
	4.1.3 DB2 logical storage
	4.1.4 Tables

	4.2 Data type comparisons
	4.2.1 Character data types
	4.2.2 Numeric data type
	4.2.3 Datetime data type
	4.2.4 Binary data type
	4.2.5 Other data types

	Chapter 5. Database conversion
	5.1 Conversion method
	5.1.1 Manual conversion
	5.1.2 Using a conversion tool

	5.2 Create DB2 instance
	5.3 Create DB2 database
	5.3.1 Obtain sort sequence information from Sybase
	5.3.2 Create database command for DB2
	5.3.3 Set up transaction log path

	5.4 Create table spaces
	5.4.1 Designing table spaces
	5.4.2 Create tablespace statement

	5.5 Create user defined data types
	5.5.1 Create data type statement
	5.5.2 User defined data types and rules

	5.6 Creating tables
	5.6.1 CREATE TABLE statement
	5.6.2 Add constraints

	5.7 Create views
	5.7.1 Create view statement
	5.7.2 Change the timestamp format using views

	5.8 Create indexes
	5.8.1 Indexes in Sybase and DB2
	5.8.2 CREATE INDEX statement

	5.9 Database security
	5.9.1 Sybase security
	5.9.2 DB2 security
	5.9.3 Migrating users and group definitions
	5.9.4 Granting authorities and privileges

	Chapter 6. Data conversion
	6.1 Unload data from Sybase
	6.1.1 Unload data using BCP utility
	6.1.2 Unload with a select statement
	6.1.3 Loading data into DB2 UDB
	6.1.4 DB2 IMPORT and LOAD utilities
	6.1.5 Load data to DB2 from Sybase BCP file
	6.1.6 Load data to DB2 from Sybase select statement file
	6.1.7 Load data to DB2 from Sybase with identity columns

	6.2 Data conversion using DataJoiner
	6.2.1 Conversion scenario
	6.2.2 Installing and configuring DataJoiner for AIX
	6.2.3 Exporting tables using DataJoiner
	6.2.4 Importing tables from IXF files
	6.2.5 Alter tables

	Chapter 7. Application conversion
	7.1 SQL statement comparison
	7.1.1 Sybase naming conventions
	7.1.2 Insert statement
	7.1.3 Delete statement
	7.1.4 Update statement
	7.1.5 Select statement syntax
	7.1.6 Select statement differences

	7.2 Transaction comparison
	7.2.1 Transaction model
	7.2.2 Transaction isolation level

	7.3 Function comparison
	7.3.1 Compatible functions
	7.3.2 Sybase functions that have no DB2 UDB equivalent
	7.3.3 Additional DB2 UDB Version 7.1 functions

	7.4 Declared temporary tables
	7.4.1 Temporary table comparison
	7.4.2 Creating temporary tables
	7.4.3 Considerations in declared temporary tables

	7.5 Save point
	7.5.1 Setting a save point
	7.5.2 Considerations in using save points

	7.6 Sybase's global variable
	7.6.1 The @@connections global variable
	7.6.2 The @@error and the @@sqlstatus global variables
	7.6.3 The @@identity global variable
	7.6.4 The @@parallel_degree global variable
	7.6.5 The @@rowcount global variable

	7.7 Trigger conversion
	7.7.1 Sybase and DB2 triggers
	7.7.2 Conversion of an insert, update trigger
	7.7.3 Conversion of cursor processing in Sybase triggers
	7.7.4 Conversion of Sybase delete triggers
	7.7.5 Conversion of Sybase triggers: if update (column name)
	7.7.6 Creating triggers from the command line processor
	7.7.7 Creating triggers from the Control Center

	7.8 Stored procedure conversion
	7.8.1 Setting the environment to build SQL procedures in DB2 UDB
	7.8.2 Converting stored procedures from Sybase to DB2
	7.8.3 DB2 Stored Procedure Builder

	7.9 Embedded SQL program conversion
	7.9.1 Statements comparison
	7.9.2 Connection
	7.9.3 Transaction
	7.9.4 Select statement
	7.9.5 Example of embedded SQL program
	7.9.6 Executing a stored procedure
	7.9.7 SQL Communication Area (SQLCA)
	7.9.8 SQL Descriptor Area (SQLDA)

	7.10 Client-Library program conversion
	7.10.1 Initialization and termination
	7.10.2 Executing SQL statement
	7.10.3 Diagnostics and processing errors in CLI programs
	7.10.4 Setup of environment for CLI application programs

	Appendix A. Conversion tools
	A.1 SQL Conversion Workbench
	A.1.1 Installation overview
	A.1.2 Unloading metadata
	A.1.3 Loading metadata
	A.1.4 Editing metadata
	A.1.5 Data migration
	A.1.6 Stored procedure conversion

	A.2 Other tools
	A.2.1 Data Junction
	A.2.2 PLATINUM ERwin

	Appendix B. Sybase and DB2 UDB terms
	B.1 Sybase versus DB2 UDB terminology
	B.2 Sybase versus DB2 task comparison
	B.3 Sybase logging versus DB2 UDB logging

	Appendix C. Special notices
	Appendix D. Related publications
	D.1 IBM Redbooks
	D.2 IBM Redbooks collections
	D.3 Other resources
	D.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Index
	IBM Redbooks review

